TÀI LIỆU THAM KHẢO XÂY DỰNG TIÊU CHUẨN

Gỗ - Xác định loài bằng công nghệ quang phổ khối lượng

Phần 1: Thuật ngữ và định nghĩa [1], [2], [3] [4]
Phần 2: Phương pháp lấy mẫu [1]
Phần 3: Phương pháp xây dựng cơ sở dữ liệu [2], [5] [6]

Phần 4: Phương pháp xác định loại gỗ [2]

DANH MỤC TÀI LIỆU THAM KHẢO

[1] Schmitz, N., Blanc-Jolivet, C., Cervera, M. T., Chavesta, M., Cronn, R. C., Deklerck, V., ... & Wiemann, M. C. (2019). Mạng lưới theo dõi gỗ toàn cầu (GTTN) - *Hướng dẫn lấy mẫu*. Xây dựng tiêu chuẩn quốc tế và cơ sở dữ liệu của GTTN.

[2] Schmitz, N., Beeckman, H., Blanc-Jolivet, C., Boeschoten, L., Braga, J. W., Cabezas, J. A., ... & Zuidema, P. A. (2020). *Tổng quan về các phương pháp sử dụng trong giám định gỗ*. Hướng dẫn về các phương pháp truy xuất gỗ.

[3] US-WISC. Giám định thực vật bằng công nghệ quang phổ khối lượng (DART-TOFMS).

[4] US-WISC. Hướng dẫn phân tích giám định bằng DART TOFMS và Thu thập dữ liệu.

[5] US-WISC. Hướng dẫn đặt tên tệp dữ liệu

[6] US-WISC. Hướng dẫn tạo thư viện NIST

General sampling guide

Task 2: Development of international standards and GTTN database
Activity 2.1: International standards
Deliverable 2.1.1: Reviewed GTTN guidelines on sampling of reference material
Date: 7 February 2019

Recommended citation:

Schmitz, N. (ed.), Blanc-Jolivet, C., Boner, M., Cervera, M.T., Chavesta, M., Cronn, R., Degen, B., Deklerck, V., Diaz-Sala, C., Dormontt, E., Ekué, M., Espinoza, E.O., Gasson, P., Gehl, D., Gehre, M., Haag, V., Hermanson, J.C., Honorio-Coronado, E., Koch, G., Lancaster, C., Lens, F., Liendo-Hoyos, E.P., Martínez-Jarquín, S., Montenegro, R., Paredes-Villanueva, K., Pastore, T., Ramananantoandro, T., Rauber-Coradin, V.T., Ravaomanalina, H., Rees, G., Sebbenn, A.M., Tysklind, N., Vlam, M., Watkinson, C., Wiemann, M. 2019. General sampling guide for timber tracking. Global Timber Tracking Network, GTTN Secretariat, European Forest Institute and Thuenen Institute.

DOI:10.13140/RG.2.2.26883.96806

The following document is an output from GTTN, which is coordinated by the European Forest Institute (EFI) and funded by the German Federal Ministry for Food and Agriculture (BMEL). The information expressed in this document are the views of the authors and do not necessarily represent those of the donor or of the European Forest Institute.

General sampling guide for timber tracking

How to collect reference samples for timber identification

Editor: Nele Schmitz

Authors*: Céline Blanc-Jolivet¹, María Teresa Cervera², Manuel Chavesta³, Richard Cronn⁴, Victor Deklerck⁵, Carmen Diaz-Sala⁶, Eleanor Dormontt⁷, Peter Gasson⁸, David Gehl⁹, Volker Haag¹⁰, John C. Hermanson¹¹, Eurídice Honorio Coronado¹², Cady Lancaster¹³, Frederic Lens¹⁴, Estephanie Patricia Liendo Hoyos¹⁵, Sandra Martínez-Jarquín¹⁶, Rolando Montenegro³, Kathelyn Paredes Villanueva^{17,18}, Tereza Pastore¹⁹, Tahiana Ramananantoandro²⁰, Harisoa Ravaomanalina²¹, Alexandre Magno Sebbenn²², Niklas Tysklind²³, Mart Vlam¹⁸, Charlie Watkinson²⁴, Michael Wiemann¹¹ **With contributions from*:** Markus Boner, Bernd Degen¹, Marius Ekué, Edgard O. Espinoza²⁵, Matthias Gehre²⁶, Gerald Koch¹⁰, Vera T. Rauber Coradin¹⁹, Gareth Rees²⁷

We also thank Tom De Mil and Priwan Srisom for their photo contributions.

*Names are listed in alphabetical order.

Edition 7 Feb. 2019

¹ Thünen Institute of Forest Genetics, Grosshansdorf, Germany

² Centro de Investigación Forestal, El Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain

³ Laboratorio de anatomía e identificación de maderas, Universidad Nacional Agraria la Molina, Lima, Peru

⁴ US Forest Service Research & Development, Washington, DC, USA

⁵ Laboratory of Wood Technology, Ghent University, Belgium

⁶ Dept. Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain

⁷ University of Adelaide, Adelaide, Australia

⁸ Royal Botanic Gardens, Kew, UK

⁹ Environmental Investigation Agency, Washington, DC, USA

¹⁰ Thünen Institute of Wood Research, Bergedorf, Germany

¹¹ US Forest Service Forest Products Laboratory, Madison, WI, USA

¹² Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Peru

¹³ Wood Identification & Screening Center, USFS International Programs, National Forensics Laboratory, U.S. Fish

& Wildlife Service, Ashland, OR, USA

¹⁴ Naturalis Biodiversity Center, Leiden, The Netherlands

¹⁵ Autoridad de Fiscalización y Control Social de Bosques y Tierra, Santa Cruz de la Sierra, Bolivia

¹⁶ Department of Biochemistry and Biotechnology, CINVESTAV Unidad Irapuato, Irapuato, Mexico

¹⁷ Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia

¹⁸ Wageningen University & Research, Wageningen, The Netherlands

¹⁹ Laboratório de Produtos Florestais, Serviço Florestal Brasileiro, Brasília, Brazil

²⁰ Mention Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, Antananarivo, Madagascar

²¹ Mention Biologie et Ecologie Végétales, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar

²² Instituto Floresta de São Paulo, São Paulo, Brazil

²³ Institut National de Recherche Agricole, Kourou, Guyane Française

²⁴ Agroisolab UK Ltd, York, UK

²⁵ National Forensics Laboratory, US Fish & Wildlife Service, Ashland, OR, USA

²⁶ Laboratory for Stable Isotopes, Department for Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research, Leipzig, Germany

²⁷ Elementar UK Ltd, Stockport, UK

Table of Contents

	RATIONALE	3	
	ABBREVIATIONS	4	
	QUICK GUIDE	5	
	Снеск LISTS	6	
	Checklist preparatory work	6	
	Checklist fieldwork	7	
1.	PREPARATORY WORK	8	
	1.1 Code of Conduct	8	
	1.2 BUDGET	8	
	1.3 LOCAL SUPPORT	9	
	1.3.1 Find a local partner institute	9	
	1.3.2 Set up a local sampling team	10	
	1.4 Sampling design	10	
	1.4.1 Scientific set-up	10	
	1.4.2 Practical set-up	15	
2.	FIELD WORK	17	
	2.1 Species identification in the field	17	
	2.2 The sample record: collecting tree & site information	18	
	2.3 COLLECTING SAMPLES	20	
	2.3.1 Overview of reference material to be collected enabling species/origin identification by all metho	ods	
		21	
	2.3.2 How to collect leaves, fruits and flowers > herbarium specimen and DNA analysis	22	
	2.3.3 How to collect wood samples > all timber identification methods	23	
3.	TRANSPORT & STORAGE OF SAMPLES AND DATA	25	
	3.1 Forest-to-lab sample chain & sample quality	25	
	3.2 SAMPLE STORAGE IN THE FIELD	25	
	3.3 SAMPLE TRANSPORT	28	
	3.4 LONG TERM SAMPLE STORAGE	28	
4.	REFERENCES	29	
5.	APPENDICES	32	
	APPENDIX 1: ILLUSTRATIONS TO THE SAMPLING GUIDE	32	
	APPENDIX 2: SAMPLING MATERIAL & EQUIPMENT	39	
	APPENDIX 3: EXAMPLES OF FORMS TO COLLECT FIELD DATA	40	

Rationale

This is a guide for the collection of *reference samples* of trees to enable the **identification of species and/or geographical origin of woody material**. It is an update of the sampling section of the <u>GTTN standards and guidelines</u> (Ekué 2014) and builds further on a discussion initiated during a workshop held in Hamburg at the Thünen Institute for Wood Research in 2014. If you are looking for support on how to collect *test samples*, see the UNODC guide (UNODC 2016).

To enable the implementation of the different laws regulating the trade in illegal wood, **reference databases** for various timber tracking tools are urgently needed for at least the most traded and endangered tree species. The <u>Global Timber Tracking</u> <u>Network</u> (GTTN) is building a central database where not only the reference data can be stored but which will also function as a sample locator. Having a common sampling guide will facilitate meaningful exchange of samples.

In addition, to optimise the use of wood/wood product identification (taxonomic identity or geographic origin) in support of law enforcement, the guide anticipates upcoming developments to combine (Paredes Villanueva 2018) different timber identification methods (Dormontt *et al.* 2015, Lowe *et al.* 2016) such as **wood anatomy** (Koch and Schmitt 2015, Helmling *et al.* 2018), **DNA-based methods** (Jolivet and Degen 2012, Blanc-Jolivet *et al.* 2018, Chaves *et al.* 2018), **stable isotopes** (Paredes-Villanueva *et al.* in preparation, Vlam *et al.* 2018), **DART TOFMS** (Lancaster and Espinoza 2012, Espinoza *et al.* 2015, Deklerck *et al.* 2017, Paredes-Villanueva *et al.* 2018) and **NIRS** (Pastore *et al.* 2011, Bergo *et al.* 2016, Snel *et al.* 2018). This sampling guide is written to make sharing of samples between researchers specialised in different timber tracking methods possible, as samples should ideally come from the same location in the tree, from the same individual and from well-identified trees when combining methods.

This guide is intended for scientists, to provide all the information needed to get the most out of sampling campaigns for timber identification purposes. This information should allow setting up a sampling protocol adapted to the specific goal of the research project, the conditions of the sampling area and the background of the people who will do the sampling. Note that this guide is to collect reference samples and hence relatively high amounts of samples from different individuals are needed to take the variability of a species into account. Once reference data have been developed for a tree species for one or more identification methods, however, only one sample of an unidentified wooden object is often sufficient to determine its identity.

Abbreviations

AAC	Assiettes Annuelles de Coupe (Annual Cutting Area)
°C	Degrees Celsius
Ca.	Circa
CITES	Convention on International Trade in Endangered Species of wild fauna and flora
Ø	Diameter
DART TOFMS	Direct Analysis in Real Time Time-of-Flight Mass Spectrometry
DBH	Diameter at Breast Height
DF10	Document specifying the timbers extracted from the forest
DNA	DeoxyriboNucleic Acid
e.g.	for example
EUTR	EUropean Timber Regulation
GPS	Global Positioning System
GTTN	Global Timber Tracking Network
ID	Identification
Min.	Minimum
NGO	Non-Governmental Organisation
NIRS	Near InfraRed Spectroscopy
Pvc	Polyvinyl chloride
RH	Relative Humidity
Sample ID	Sample IDentity
UNODC	United Nations Office on Drugs and Crime

Quick guide

The ideal reference sample collection for timber identification

Check lists

Checklist preparatory work

Before all else:

- Did I consider costs for permits, transport of the sampling team, transport of samples back to the lab, payment of sampling team, accommodation and subsistence, sampling material and equipment? ➤ 1.1-1.2
- 2. Did I get permits to do research in the different sampling sites, to collect samples and to export and import them? ➤ 1.1-1.2
- 3. Did I explore the available local knowledge and expertise and find local partners to build a local sampling team? ➤ 1.3

Specifying the aim of the mission:

- 4. Did I clarify the research question of the sampling campaign? > 1.4.1
- 5. Did I do a scientific literature review on the species and sites that will be sampled to collect all basic information required? ➤ 1.4.1

To decide beforehand:

- 6. Did I decide on how to select sites and trees within sites? > Table 1, 1.4.1
- Did I decide on the amount of material that will be sampled (based on budget and essential quantities)? > Table 1, 2.3.1
- Did I decide on the site and tree data that will be collected and how? > 2.2, 3.1, appendix 3
- Did I decide on how samples will be stored in the field, during transport and when back at the lab? ➤ 2.3.2-3, 3.2-3.4
- 10. Did I decide on the material and equipment to be used? > Table 1, Appendix 2
- 11. Did I decide on a labelling code? > 1.4.2
- 12. Did I decide on all other practicalities for the field work? > 1.4.2

Checklist fieldwork

Packing:

- Do I have all required material and equipment for the amount of samples that I want to sample? > Appendix 2
- 2. Do I know how to label or is all material pre-labelled? > 1.4.2
- Do I have what is needed to identify the tree species of interest in the field? > 2.1

At the field site:

- Start recording the field trip in your notebook/on your template form ➤ 2.2, Appendix 3
- 5. Collect site information > 2.2
- 6. Collect herbarium material and leaf samples > 2.3.2
- 7. Collect wood samples > 2.3.3
- 8. Collect and record all tree info > 2.2

At the field station/camping area:

- 1. Dry wood cores/samples and change humid silica for fresh one > 3.2
- Assemble herbarium specimens if not done yet, change humid newspapers for dry ones or add alcohol if drying the herbarium material later > 3.2
- Check, complete and organise field notes where needed, digitise if already possible > 3.1

1. Preparatory work

1.1 Code of Conduct

The first principle that has to be considered is the sovereign rights of states over their forest resources. Collection, transport, processing, management and storage of material from forest trees have to be performed in accordance with the **national and local regulations** (ask for information from *e.g.* your local partner(s), forester, concession/land owner, park authorities). In addition, the sampling campaign should be in line with the existing **regional regulations** such as the EUTR, the US Lacey Act and the Australia Illegal Logging Prohibition Act (see *e.g.* here for more information) and with **international regulations** such as CITES and the Nagoya protocol (an explanatory guide can be found here). For information about the requirements concerning CITES listed species you can contact <u>national CITES authorities</u>.

Accordingly, research **permits** for field collection, Material Transfer Agreements or other appropriate documentation must be requested well in advance to ensure the correct collection, transport and management of the forest tree material harvested and stored as reference samples. In addition, the **community/ies living in the area of sampling need to be informed** on the sampling campaign (as some might for example be worried the bore holes will damage the trees).

1.2 Budget

Sampling costs are often underestimated. Before planning your sampling campaign contact the <u>GTTN network</u> and the GTTN followers via the <u>ResearchGate project page</u> to find out if you can team up with others interested in sampling in the region to make the trip more cost-efficient. It is advisable to account for the following expenses when budgeting:

- Any fees related to getting permission and support from both national and local authorities for the planned sampling and for transportation of the samples from the field to the lab.
- Transportation to the different sampling sites: costs will be related to accessibility. Inform yourself on the means and duration of transportation required to reach the different sampling sites and the related costs (vehicle, driver, fuel costs).

- Transportation and/or shipping of the samples to the laboratory, including potentially required phytosanitary certificates.
- **Payment for assistance** by people knowing (i) the area and (ii) the tree species during the entire journey to and in the forest. Consider sampling efficiencies as low as 10 trees per day for tree species with low densities.
- Accommodation and subsistence.
- Sampling material and equipment (see Appendix 2).

TIP: If you will need a **car** and you have the choice, pick one with a functioning cigarette lighter (accessory power outlet). This will enable you to charge batteries (for GPS, electric increment borer, laser meter, camera, computer) in the car when needed.

TIP: To be able **to estimate the sampling work that can be done in one day** if samples are taken as described in *§2.3 Collecting samples*, it is advisable to do field tests with the sampling team. The duration of a sampling campaign will depend on variables such as: species density, available equipment (*e.g.* mechanical or hand borer), time needed to get to the canopy (to collect leaves), chosen intensity of herbarium specimen collection, number of timber identification methods material is collected for, experience of the field team.

1.3 Local support

1.3.1 Find a local partner institute

TIP: It is recommended to include local partners from the project design onwards to make sure that the project interests both sides and the local partner does not just serve as a collector.

Identification of **local partners** (universities, research institutes, NGOs, companies, ...) which already have expertise and/or interest in timber identification techniques and/or have some infrastructure, material and trained personnel.

The local partner will be able to advise on a **local botanist/(para)taxonomist, an experienced driver and a field guide**, who know the area and its species as well as its dangers. They are an indispensable part of the field team as guides in the forest to find the targeted trees, facilitate interaction with local communities and to reduce the risk of attacks from animals or hostile people (*e.g.* illegal loggers, miners).

Get advice from your local partner on how to get the required **permit(s) to collect and export** samples and who should be contacted before arriving at the different sites you want to sample (*e.g.* community leaders, officials, company personnel). Check if some physical samples can be stored in a local herbarium (see <u>Index</u>

<u>Herbariorum</u>) and/or xylarium (see <u>Index Xylariorum</u>) and taxonomically identified by specialists (start with checking the <u>GTTN network</u> to find contacts).

Identify **local students** who are working or might work on the species of interest and might be interested in co-authoring the research papers and/or to participate in the expedition.

1.3.2 Set up a local sampling team

Create a base of trust both with the local community and within the sampling team before starting the sampling campaign and make sure everyone knows the role and responsibility of each other. In case the principal investigator cannot participate for the full length of the sampling campaign, his/her presence at the start of the sampling is necessary to train the people who will do the sampling and adapt the sampling protocol if necessary.

- Use the local knowledge on species identity, variability, density and sites of occurrence provided by botanists, ecologists, local guides and collaborators.
- At least one person should be scientifically trained and understand the reasoning behind the sampling design and be responsible for oversight of the sample collection accordingly, for note taking and for correct GPS reading.
- At least one person should be technically trained and responsible for sample collection according to protocol and maintenance of equipment.
- Depending on the conditions additional expertise might be necessary: a
 person that can use a gun, a driver used to the terrain that will be sampled, a
 tree climber, a person trained in using a sling shot.

1.4 Sampling design

1.4.1 Scientific set-up

To be able to set-up the sampling design a **scientific literature review** and general information search should be undertaken to collect as much information as possible on the species and geographic locations of interest. The thoroughness of the review on the geographic location(s) will depend on the **goal of the sampling**, species or origin identification and the required resolution of the origin identification. Table 1 gives an overview of the reference material that needs to be collected to allow species or origin identification using the different tracking methods.

Information that should be collected (where applicable for the specific wood identification goal of the sampling):

- > To decide on where to go sampling (which countries and locations)
 - samples already available (check <u>GTTN's reference database</u>)
 - species distribution (focus on natural occurrence not on political borders)
 - intraspecific species diversity (genetic variation, which might also influence anatomical and chemical properties)
 - species abundance (a minimum of 20 individual trees per species of interest should be available for sampling in an area of 1 km^{2*})
 - spatial distribution of species in forest concession (forest inventory map)
 - environmental variation (include as much as possible)
 - chance of getting a permit to sample at the sites of interest
 - accessibility and feasibility (infrastructure)
 - safety (political situation, terrain)
 - relevance for the timber trade (areas where legal and/or illegal harvesting is currently happening, or where it is projected to happen)
 - risk of endangering the species population[†]
 - possibility to partner with a concession holder and to sample during or shortly after logging (within one week at most and with trees still lying at the felling site, to guarantee fresh wood and leaves and the leaves' origin)
- To decide on when to go sampling, balancing the ease to identify species (flowers or fruits available), the ease to do field work (dry season) and minimising tree injury by coring (faster compartmentalisation of the wound in the growing season[‡])
 - species phenology (months of leaf flushing, flowering, fruiting)
 - climatic conditions (see §1.4.2 practical set-up)
- > To decide on what to sample
 - taxonomically closely-related species or cryptic species
 - trunk diameter found in trade and diameter at which the species starts forming heartwood in the location of interest
- > To anticipate potential identification issues
 - potential association with rhizobia (can influence isotope profile)
 - seed/tree source of species in the forest concession

^{*} For heavily harvested species where this might be impossible, select sites with the highest tree density available.

⁺ *E.g.* Neo *et al.* (2017)

^{*} Grissino-Mayer (2003), Tsen *et al.* (2016)

Table 1. Overview of the essential and ideal amount of reference material that needs to be collected for species or geographic origin determination of wood via the currently available techniques.

Design questions	esign questions Wood anatomy DNA Multi-element stable isotopes DART-TOFMS		NIRS		
For all questions					
general requirements	Sample all materia damage from bac fresh water access,	II (leaves, wood) from mature trees (DBH larg teria, fungi or insects are visible and from tre). Assure an even distribution of the numbe with fe	er than 20 cm), at breast height o es growing in as varied environme er of individuals among sampling s wer trees per location.	r 30 cm above buttresse ents as possible (soil typ ites, with a preference f	es ^l , where no stains or e, altitude, exposure, for more sampling sites
type of material	Sap- and/or heartwood	Leaves, needles, buds and/or cambium	Sap- or heartwood or both	Heart	wood ⁱⁱ
amount of material per sample	Block of 1 cm ³ or a 20 mm diameter core or (ideal) 1 x 7 x 11 cm wood piece ^{III}	10 cm ² of leaves/needles/buds or 3 cm diameter punch of cambium layer or (but less ideal) 1 cm ³ of sapwood	Min. 8 growth years or <i>ca.</i> 10 cm of a 5 mm diameter core (5 g of wood in shavings)	A small core (3-5 slivers, 10-20 optimal, with a sliver being of fingernail size is enough)	Blocks ^{IV} of min. 2 cm ² in tangential or radial longitudinal direction
replicates ^v	1 per tree ^{vi}	3 per tree	3 per tree	1 per tree	3 per tree
preferred equipment	Increment borer, chisel and hammer, saw	Telescopic scissors or sharpened hook, sling shot, puncher and mallet	Increment bo	rer ^{vii} (manual or mechai	nical)
For species identification					
botanical material		1 herbarium specimen (branch with leaves,	fruits and/or flowers and optiona	Il a piece of bark) per tre	e
nr. of trees & sites (essential)	5 trees or 5 trees per site if environment changes	50 trees over the whole species range	not possible with this method	15 trees	20 trees
outgroup (ideal)	At leas	t 5 trees should be collected from each specie	es that could be confused with the	e species of interest (sar	ne genus).
nr. of trees & sites (ideal)	20 trees over the whole species range (for machine vision)	10 trees per sampling site with a total min. of 50 if covering the whole species range. More sampling sites are better than more trees per site.	not possible with this method	20 trees	30 trees

Table 1. (continued)

Design questions	Design questions Wood anatomy DNA Multi-element stable is		Multi-element stable isotopes	DART-TOFMS	NIRS
For origin tracking to a re	gion or country				
botanical material	Pictures of trunk,	leaves, and if possible fruits and/or flowers p then a herbari	per tree and 1 herbarium specime um specimen should be taken.	n per site ^{vIII} . If one tree i	s difficult to identify,
nr. of trees & sites (essential)		20 trees per sampling site	5 trees per sampling site	50 trees ^{IX} in total for 1 region/country	50 trees ^{IX} in total for 1 region/country
nr. of trees & sites (ideal)	not possible with this method	30 trees ^X (at least 200 m apart ^{XI}) per sampling site (at least 100 km apart) with a total of 1000 trees and sites covering the entire species range and all different environmental conditions	Each time 10 trees per sampling site and sampling sites covering entire species range	100 trees, sampling sites covering entire species range	100 trees, sampling sites covering entire species range
For origin tracking to a co	oncession				
botanical material	F	Pictures of trunk, leaves, and if possible fruits	and/or flowers per tree and 1 her	rbarium specimen per si	te ^{xII} .
nr. of trees & sites (essential)	not possible with this method	Per focus concession 200 trees at least 50 m apart ^{XI} (5 x 40 trees in the annual logging plot and 4 other well-distributed areas) and from each neighbouring concession 50 trees (can be along a transect)50 trees per concession and from each neighbouring concession 25 trees50 trees ^{IX}		50 trees ^{ix}	
nr. of trees & sites (ideal)		Sample size depends on concession size and distance to neighbour concessions	Depending on the climatic or environmental variations in a sample site	100 trees	100 trees
For origin tracking to an i	ndividual tree				
botanical material		1 herbarium specimen (branch	n with leaves, fruits and/or flower	s) per tree ^{xIII}	
nr. of trees & sites (essential)	not possible with this method	all trees which should be felled according to management plan	not possible with this method	not possible with this method	not possible with this method

^{II} Heartwood in slivers, blocks, or sawdust is required for chemical analysis by DART TOFMS and NIRS. Heartwood has a higher content of extractives than sapwood which allows easier discrimination between species. In addition, sapwood contains sugars that confuse the spectra for identification. Different species of trees have varying degrees of depth at which heartwood forms so care should be taken to clearly identify and collect the heartwood.

^{III} Only possible from already felled trees.

^{IV} Also powder of 4 mm granulometry can be used to obtain a NIRS spectrum. Only on wood pieces, however, can the method be used in the field. Besides, during the milling process special care should be taken to not affect the chemical components in the wood.

^v Replicates might be needed to collect enough material and to account for intra-tree variation.

^{VI} For machine vision it is however useful to sample from different positions in the tree to include as much intra-tree and intra-specific variation as possible (but while sampling only mature wood).

^{VII} Advice and tips for using an increment borer can be found in Grissino-Mayer (2003) and examples of mechanical borers are described at <u>http://www.smartborer.com</u> (Kagawa and Fujiwara, 2018) and in Krottenthaler *et al.* (2015).

^{VIII} Ideally, each reference sample should be connected to a herbarium specimen (preferably branch with leaves, flowers and/or fruits) deposited in a public herbarium. However, this is not always possible (*e.g.* when sampling 1000 trees for provenance determination).

^{IX} Origin tracking with DART and NIRS is currently under development. The required number of trees might thus lower in future.

^x Double the number of individuals if congeneric species may confound species identification.

^{XI} This condition is lifted when tree density is too low to otherwise reach the minimum sample size.

 $^{\rm XII}$ Also in concessions misidentifications can happen.

XIII Even here herbarium specimens are essential because (1) many journals won't accept wood identification papers that don't reference herbarium specimens and (2) when the material would ever be used in a court case, the absence of herbarium specimens would harm the case.

¹Wood characteristics change from roots to canopy and it is hence advisable to standardise the height of sample collection. Also near buttresses (and any other imperfections) wood characteristics are deviant.

Overview of current practices in data analysis for wood identification

GTTN

Global Timber

Tracking Network

A guide for the different timber tracking methods June 2020

Overview of current practices in data analysis for wood identification

A guide for the different timber tracking methods

June 2020

Editor:

Nele Schmitz

Authors*:

Hans Beeckman¹, Céline Blanc-Jolivet², Laura Boeschoten³, Jez W.B. Braga⁴, José Antonio Cabezas⁵, Gilles Chaix^{6,7,8}, Simon Crameri⁹, Bernd Degen², Victor Deklerck^{1,10}, Eleanor Dormontt¹¹, Edgard Espinoza¹², Peter Gasson¹³, Volker Haag¹⁴, Stephanie Helmling¹⁴, Micha Horacek^{15,16}, Gerald Koch¹⁴, Cady Lancaster¹², Frederic Lens¹⁷, Andrew Lowe¹¹, Sandra Martínez-Jarquín¹⁸, Justyna Anna Nowakowska¹⁹, Andrea Olbrich¹⁴, Kathelyn Paredes-Villanueva²⁰, Tereza C.M. Pastore²¹, Tahiana Ramananantoandro²², Andriambelo R. Razafimahatratra²², Prabu Ravindran^{23,24}, Gareth Rees²⁵, Liz F. Soares⁴, Niklas Tysklind²⁶, Mart Vlam³, Charlie Watkinson²⁵, Elisabeth Wheeler^{27,28}, Robert Winkler¹⁸, Alex C. Wiedenhoeft^{23,24,29,30}, Valentina Th. Zemke¹⁴, Pieter Zuidema³.

*Names are listed in alphabetical order.

Recommended citation:

Schmitz, N. (ed.), H. Beeckman, C. Blanc-Jolivet, L. Boeschoten, J.W.B. Braga, J.A. Cabezas, G. Chaix, S. Crameri, B. Degen, V. Deklerck, E. Dormontt, E. Espinoza, P. Gasson, V. Haag, S. Helmling, M. Horacek, G. Koch, C. Lancaster, F. Lens, A. Lowe, S. Martínez-Jarquín, J.A. Nowakowska, A. Olbrich, K. Paredes-Villanueva, T.C.M. Pastore, T. Ramananantoandro, A.R. Razafimahatratra, P. Ravindran, G. Rees, L.F. Soares, N. Tysklind, M. Vlam, C. Watkinson, E. Wheeler, R. Winkler, A.C. Wiedenhoeft, V.Th. Zemke, P. Zuidema (2020). Overview of current practices in data analysis for wood identification. A guide for the different timber tracking methods. Global Timber Tracking Network, GTTN secretariat, European Forest Institute and Thünen Institute. DOI: 10.13140/RG.2.2.21518.79689

Cover: José Bolaños

Project leader: Jo Van Brusselen

Pictures: Unless mentioned otherwise, all pictures in this document were provided by the authors.

The following document is an output from GTTN, which is coordinated by the European Forest Institute (EFI) and funded by the German Federal Ministry for Food and Agriculture (BMEL). The information expressed in this document are the views of the authors and do not necessarily represent those of the donor or of the European Forest Institute.

Affiliations:

- 1-Royal Museum for Central Africa, Tervuren, Belgium
- 2-Thünen Institute of Forest Genetics, Grosshansdorf, Germany
- 3-Wageningen University & Research, Wageningen, The Netherlands
- 4-University of Brasília, Brasília, Brazil

5-Forest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CIFOR), Madrid, Spain

6-CIRAD, UMR AGAP, Montpellier, France

7-AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

8-ESALQ-USP, Wood Anatomy & Tree-Ring Lab, Piracicaba, Brazil

9-Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland

- 10-Ghent University Woodlab, Ghent, Belgium
- 11-University of Adelaide, Adelaide, Australia
- 12-U.S. Fish & Wildlife Service, Ashland, USA
- 13-Royal Botanic Gardens, Kew, UK
- 14-Thünen Institute of Wood Research, Bergedorf, Germany
- 15-HBLFA Francisco-Josephinum, Wieselburg, Austria
- 16-Institute of Lithospheric Research, Vienna University, Vienna, Austria
- 17-Naturalis Biodiversity Center, Leiden, The Netherlands

18-Department of Biochemistry and Biotechnology, CINVESTAV Unidad Irapuato, Irapuato, Mexico

- 19-Cardinal Stefan Wyszynski University, Warsaw, Poland
- 20-Gabriel René Moreno University, Santa Cruz, Bolivia
- 21-Brazilian Forest Service, Brasília, Brazil

22-School of Agronomy, Department of Water and Forestry, University of Antananarivo, Antananarivo, Madagascar

- 23-USDA Forest Service, Madison, USA
- 24-University of Wisconsin, Madison, USA
- 25-Agroisolab UK Ltd, York, UK
- 26-National Institute of Agricultural Research (INRA), Kourou, Guyane Française
- 27-North Carolina State University, Raleigh, USA
- 28-North Carolina Museum of Natural Sciences, Raleigh, USA
- 29-Purdue University, West Lafayette, USA
- 30-São Paulo State University, São Paulo, Brazil

For more information about the authors see the GTTN project partner finder.

Table of Contents

List of Box	xes		7
List of Tak	bles		7
List of Fia	ures		8
Rationale	,		9
Abbrouiat	tione 0	Torminology	10
Abbieviut		Terminology	
visuai sur	nmary		12
1. Wo	ood ana	ntomy	
1.1	Resourc	es required for wood anatomical analysis	
1.2	Data ana	alysis for taxon identification of solid wood	
1.2	2.1 W	ood anatomical analysis of reference samples	
	1.2.1.1	Development of macroscopic reference data	16
	1.2.1.2	Development of microscopic reference data	17
	1.2.1.3	Development of charcoal reference data	18
	1.2.1.4	Development of reference data for machine vision (MV)	
1.2	2.2 W	ood anatomical analysis of test samples	23
	1.2.2.1	Macroscopic Anatomical analysis of wood	23
	1.2.2.2	Microscopic anatomical analysis of wood	
	1.2.2.3	Anatomical analysis of charcoal	
	1.2.2.4	Using machine vision software for wood identification	
1.2	2.3 Sti	rengths & Limitations	28
	1.2.3.2	Microscopic anatomical analysis of wood	29
	1.2.3.3	Anatomical analysis of charcoal	
	1.2.3.4	Using machine vision software for wood identification	32
1.3	Data ana	alysis for taxon identification of pulp, paper and fibreboard	
1.3	8.1 De	evelopment of vessel element reference data	
	1.3.1.1	Preparation of reference slides	
	1.3.1.2	Publishing references	
1.3	8.2 Ar	nalysis of test samples from fibre material	
	1.3.2.1	Preparation of fibre samples for identification	36
	1.3.2.2	Comparing vessel elements of test sample with reference data	37
1.3	8.3 Sti	rengths & Limitations	38
1.4	Key liter	ature for wood anatomical data analysis	39
2. Ge	enetics		43
2.1	Resource	es required for genetic analysis	
2.2	Introduc	tion	45
2.2	2.1 Ba	isics of population genetics	45
2.2	2.2 Ch	noice of genetic marker and methodology	
	2.2.2.1	Microsatellite markers to identify seized wood	49
	2.2.2.2	SNPs markers to identify seized wood	50
2.3	Develop	ment of SNP genetic markers	
2.3	8.1 Sa	mpling design	
	2.3.1.1	For species identification	
	2.3.1.2	For identification of provenance	
	2.3.1.3	Combined approach	52
2.3	8.2 SN	IP development	52
2.3	8.3 SN	IP validation	52
2.4	Construe	ction of a genetic baseline reference database	53
2.4	.1 Co	Ilection of voucher specimens and reference samples	53
2.4	l.2 Da	ata checking	53

	2.4.3	Data exploration	54
	2.4.4	Assembly and analysis of the genetic baseline reference database	55
	2.4.4	I.1 Clustering data	55
	2.4.4	Identifying the number of groups	56
	2.4.4	1.3 Estimating basic population genetics statistics	57
	2.4.4	1.4 Evaluating assignment power	57
	2.4.4	1.5 Selection of diagnostic markers	58
2	2.5 Analy	ysis of test samples	59
	2.5.1	Genotyping test samples	59
	2.5.2	Individual assignment to genetic baseline	59
2	2.6 Stren	ngths & limitations	61
2	2.7 Key li	literature for genetic data analysis	62
3.	Stable i	isotopes	65
З	3.1 Reso	burces required	66
З	3.2 Using	g stable isotopes for origin identification	67
	3.2.1	Developing stable isotope reference data	67
	3.2.1	1.1 Sample collection	68
	3.2.1	L.2 Sample preparation & Analysis	70
	3.2.1	L.3 Data preparation	71
	3.2.1	L.4 Visualisation of spatial stable isotope patterns via isoscapes	72
	3.2.1	L.5 Model development via discriminant analysis	73
	3.2.1	L.6 Model validation	74
	3.2.2	Analysis of stable isotope data from test samples	75
	3.2.2	2.1 Sample & Data preparation	75
	3.2.2	2.2 Discriminant analysis with the test sample	75
	3.2.2	2.3 Using isoscapes to interpret sample data	76
	3.2.3	Strengths & Limitations	77
З	3.3 Key li	literature for stable isotope data analysis	78
4.	DART T	rof Mass Spectrometry	80
4	1.1 Reso	purces required	81
4	1.2 Using	g DART TOFMS for taxon or provenance identification	82
	4.2.1	Development of DART TOFMS reference data	82
	4.2.1	L.1 Sample selection & Preparation	82
	4.2.1	L.2 Spectra collection	82
	4.2.1	L.3 Data preparation	83
	4.2.1	L.4 Model development	84
	4.2.1	L.5 Model optimisation & Validation	85
	4.2.2	Analysis of DART TOFMS data for test samples	86
	4.2.3	Strengths & Limitations	87
4	1.3 Key li	literature for DART TOFMS data analysis	88
5.	NIR spe	ectroscopy	90
5	5.1 Reso	purces required	
5	5.2 Using	a NUD spectroscopy for tayon or provonance identification	
	5.2.1	Development of NIR spectroscopic reference data	93
	5.2.1 5.2.1	Development of NIR spectroscopic reference data	93 93
	5.2.1 5.2.1 5.2.1	Development of NIR spectroscopic reference data	93 93 93
	5.2.1 5.2.1 5.2.1 5.2.1	Development of NIR spectroscopic reference data L.1 Sample selection & Preparation L.2 Spectra collection L.3 Data cleaning	93 93 93 94
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	Development of NIR spectroscopic reference data	
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1	Development of NIR spectroscopic reference data L.1 Sample selection & Preparation L.2 Spectra collection L.3 Data cleaning L.4 Model development L.5 Model validation	93 93 93 93 94 94 97 98
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.2	Development of NIR spectroscopic reference data L1 Sample selection & Preparation L2 Spectra collection L3 Data cleaning L4 Model development L5 Model validation Analysis of NIR spectroscopic data from test samples	93 93 93 93 94 94 97 98 98 99
	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.2 5.2.2	Development of NIR spectroscopic reference data L1 Sample selection & Preparation L2 Spectra collection L3 Data cleaning L4 Model development L5 Model validation Analysis of NIR spectroscopic data from test samples Strengths & Limitations	93 93 93 93 94 94 97 97 98 99 99
5	5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.2 5.2.2 5.2.3 5.3 Key li	Development of NIR spectroscopic reference data L1 Sample selection & Preparation L2 Spectra collection L3 Data cleaning L4 Model development L5 Model validation Analysis of NIR spectroscopic data from test samples Strengths & Limitations literature for NIRS data analysis	93 93 93 94 94 97 98 98 99 99 100 101

6.	An exp	pert view on the combination of provenancing methods	103
	6.1 Curr	ent challenges & Future perspectives	104
	6.2 Cond	crete examples of how methods could be combined	107
	6.2.1	Using maps as the interface for geographic origin assignment	107
	6.2.2	Using the software GeoAssign to combine genetic & stable isotope data	109
	6.2.2	2.1 Background information	109
	6.2.2	2.2 Analysis method to combine data	110
	6.2.2	2.3 Self-assignment success of both methods	111
	6.2.2	2.4 Assignment success of method combination strategies	111
	6.2.3	Using Geneland and Adegenet to combine genetic and phenotypic data	116
	6.2.4	Key literature for method combinations	117
7.	Appen	dices	
	7.1 App	endix 1: List of CITES-protected trade timbers in the database CITESwoodID	
	7.2 Appe	endix 2: Extended info on exploration, checking, and analyses of genetic data	
	7.2.1	Decision trees for provenance & Species identification	120
	7.2.2	Software used in clustering analyses	122
	7.2.3	Data exploration with MVA	
	7.2.4	Data checking	125
	7.2.5	Bayesian clustering algorithms	126
	7.2.5	5.1 STRUCTURE	126
	7.2.5	5.2 Geneland	128
	7.2.5	5.3 GDA-NT	129
	7.2.5	5.4 assignPop:	130
	7.2.5	5.5 GeoAssign	131
	7.3 Арре	endix 3: Background info on isotopes	133
	7.3.1	The origin of chemical compounds in wood	133
	7.3.2	The origin of stable isotope ratios in wood	133
	7.3.3	The geographic origin of wood	135
	7.4 Appe	endix 4: Guidelines for the building of ideal reference data collections	136
	7.5 Appe	endix 5: Method independent advice for data storage & Management	137
	7.6 Appe	endix 6: Method independent advice for data interpretation & Reporting	139
	7.6.1	Advice for correct interpretation of observations	139
	7.6.2	Quality data reporting	140

4. DART TOF Mass Spectrometry

Definition DART TOFMS reference data: the chemical fingerprint of a wood sliver (and by extent species/provenance) based on the complete set of small chemical molecules found within the sample.

Authors: Victor Deklerck, Edgard Espinoza, Cady Lancaster, Sandra Martínez-Jarquín, Kathelyn Paredes-Villanueva, Robert Winkler

*Authors are in alphabetical order.

Fig. 16: Heatmap showing the presence of the ions for the different specimens per species.

4.1 **RESOURCES REQUIRED**

Access to reference material

The largest database currently available for DART TOFMS is the **Forensic Spectra of Trees Database**[©] (ForeST Database[©]). This database is held and curated by the National Fish and Wildlife Forensic Laboratory, NFWFL (Ashland, OR, USA). ForeST[©] contains thousands of species from hundreds of genera. The focus of the database is for species identification of CITES-listed species, lookalikes of the CITES-listed, and commercially significant timber species, especially from tropical regions. **A softwood specific database** is currently being refined and provides genus-level identification.

Reference applicability

For use of the ForeST Database[©], NFWFL recommends that it be used in conjunction with **JEOL-line TOF MS**. Due to the chemical complexity of wood products, academic investigation of species separation and classification can use a variety of instrument parameters. **Use of the ForeST Database[©] requires tuning instruments to the database**. Contact NFWFL for more details on instrument validation.

NOTE: DART TOFMS is not the only mass spectrometer that can be used for timber identification, it is however, the most developed one with the most developed database and adjoined software.

Software

Software	Performance	Accessibility
R	Can be used for any statistical computing task. Computer programming knowledge needed. Customization easily implementable.	<u>Free software</u>
<i>Mass Mountaineer</i>	Purpose-built software for DART TOFMS with all standard statistical packages included. More labour-intensive customization possibilities for other research explorations. Recommended for use in forensic science.	<u>Commercial</u> <u>software</u>
NIST Search Software	The National Institute of Standards and Technology (NIST) search software provides some of the most advanced search algorithms for qualitative analysis. Spectra can be quickly compared.	<u>Commercial</u> <u>software</u>

Table 5: Overview of the software used for wood identification via DART TOFMS.

4.2 USING DART TOFMS FOR TAXON OR PROVENANCE IDENTIFICATION

4.2.1 DEVELOPMENT OF DART TOFMS REFERENCE DATA

NOTE: DART TOFMS is not regularly used for provenance identification at the time of this publication. However, although the variation in the results is subject of further investigations, the protocol below can be used as a start for provenance identification as well (Espinoza *et al.* 2014, Finch *et al.* 2017, Paredes-Villanueva *et al.* 2018).

4.2.1.1 SAMPLE SELECTION & PREPARATION

Collect samples of the species and/or geographic region (provenance) needed to be characterised and include **equivalent sample sizes per species/provenance**. Use only the **heartwood** (see <u>GTTN sampling guide</u>) and the non-contaminated parts of the wood (see Appendix 4). However, it is still good practice to also collect **reference material of known or suspected contaminants** (such as varnish, oil, coating). Molecular ion peaks of known contaminants can be subtracted from the mass spectra and contaminated wood samples can be salvaged in post-processing.

4.2.1.2 SPECTRA COLLECTION

Collect the spectra as per the instructions of the mass spectrometer instrument. **The mass spectrometers are calibrated** with a reference solution of known masses (for example polyethylene glycol solution). If the ForeST Database[©] is to be used, the DART TOFMS should be calibrated to the database (see §4.1 > *Reference applicability*).

For **archiving and sharing the mass spectrum**, it is important to declare the provenance of the reference material. One easy solution is to label the individual spectrum file names with explicit data that can describe the metadata easily. NFWFL uses the following strategy: GenusSpecies_AnalysisLabAccession_SourceAccession. For example:

File name: DalbergiaNigra_WD123456_MADw1234 Species: *Dalbergia nigra* NFWFL accession number: WD123456 Original catalogue number: Forest Products Lab ID for Madison Wood Collection (MADw) 1234.

4.2.1.3 DATA PREPARATION

Before developing a statistical model there is a need to remove outliers from training sets. Hawkins (1980) describes 'an outlier' as *an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism.* Cross-check the spectra with spectra already in the database and with spectra of known contaminants.

- <u>Heatmaps</u> allow for a simultaneous comparison of all the spectra data and are ideal for identifying outliers (*e.g.* in *R* or *Mass Mountaineer*).
- <u>Average spectra</u> can be created (*e.g.* in *R*) for each species by combining all available spectra for this species. From this super spectrum outliers can be identified.
- <u>Be cautious of contaminants</u>. Use heatmaps of the known contaminants and cross-reference to the wood sample data set to avoid selecting contaminate molecular ion peaks in model training.

Before removing samples from the dataset, outliers should be further evaluated.

One way to evaluate spurious spectra is to determine if suspected outlier specimens have a different and distinct chemotype from other spectra of the same species. Another way is to check if the intensity is similar for all the m/z ions. Samples from the same species will show similar intensities of the molecules detected.

Possible reasons for outliers are:

- The reference database does not yet represent the chemical intra-variability of the species or provenance³⁰.
- Mislabelled or misidentified samples.
- The measurement was not done properly.
- The tissue type was different from the other specimens (*e.g.* sapwood *vs.* heartwood)
- There is a contaminant present on the sample.

³⁰ When is an outlier not an outlier? Whichever approach you take to determine this, it is key to know your data and your research area well. For more info on data interpretation see Appendix 6.

It is recommended that outlier samples be re-analysed by DART TOFMS to be able to exclude the possibility of an erroneous measurement.

4.2.1.4 MODEL DEVELOPMENT

- ☑ <u>Only use reference spectra which are in consensus</u>.
- ☑ <u>Hold out reference spectra</u> to check later for model overfitting and model validation.
- ☑ <u>Build statistical models</u> for species/provenance classification using (i) the same number of spectra for each species/provenance included, and (ii) a suitable kind of statistical analysis. What is suitable will depend on the species/provenance (group) being investigated.
 - Multivariate statistics such as Principal Component Analysis (PCA), Kernel Discriminant Analysis (KDA) or Discriminant Analysis of Principal Components (DAPC) with Mass Mountaineer are recommended for forensic analysis because this software easily produces quantitative results and provides probability estimates, which are used in court to describe certainty of the analysis.
 - Random forest (Deklerck et al. 2017, Finch et al. 2017, Paredes-Villanueva et al. 2018, Deklerck et al. 2019) has the advantage that it can be used when there are less than 4 classes.
 - PAM clustering or Adaptive Boosting are two robust classifiers for discrimination between two groups.

The application of DART TOFMS to wood identification is a relatively new technique (since 2012), and therefore model development options are not limited to the above list since new mathematical tools are continuously being explored (such as dynamic time warping and deep learning algorithms).

4.2.1.5 MODEL OPTIMISATION & VALIDATION

Before constructing the final model, it is proposed to **screen the spectral data preprocessing parameter settings for optimal classification accuracy**. Depending on the classification algorithm this can be done as follows:

- Reduce the number of variables (combinations of ions) by carefully selecting components in a PCA.
- Select ions for model building using Fisher Ratio analysis or by careful visual examination of heatmaps.
- Mass tolerance for <u>binning</u> and relative abundance cut-off <u>threshold settings</u> (pre-processing parameters) and <u>number of ions</u> (classification parameter) can be screened in an automated way, when using the *random forest* algorithm or any algorithm that is data frame dependent and does not work with individual text files for model-building, as described in Deklerck *et al.* (2019).

Test the model for overfitting and classification accuracy by removing reference spectra (leave one out cross validation, LOOCV) and by analysing unused reference spectra that were not used in the model development (sometimes called 'hold-out set' or 'validation set'). Model parameters are optimised to obtain (i) the highest LOOCV possible, and (ii) accurate classification of the hold-out specimens.

4.2.2 ANALYSIS OF DART TOFMS DATA FOR TEST SAMPLES

NOTE: The **purpose of this protocol** is to provide a procedure to analyse and identify specimens of wood by comparing them with a curated database of known species or a specific set of reference samples. The intent of this method is not to identify all the compounds found in the wood samples, but to infer from specific ions present that a given wood sample did or did not originate from a known species. An experienced analyst may occasionally need to vary the procedure to accommodate a particular sample. The different data analysis steps:

- Wood anatomical analysis of the unknown sample to determine the genus.
- **Collection of spectra** as described in §4.2.1.2.
- Library search for preliminary classification. Determine if the unknown spectra match a species held in the ForeST reference database. The top library hits are then used to create the subsequent heatmaps and multivariate statistical models. This step is implemented in *Mass Mountaineer*.
- Creation of a heatmap and evaluation of the unknown. Frequently the library search will indicate that two or three species have spectra similar to the unknown. These taxa should be used to create the heatmap and to determine if the chemotypes for each species selected are similar to that of the unknown spectra.
- Selection of the variables (ions) for the multivariate modelling. Use the full set of curated reference spectra available for the species/provenance of interest as the training set. For *random forest*, variable selection is automatically included in the set-up and can be optimized (see §4.2.1.5). This is similar for other machine learning techniques or classification algorithms in *R*.
- Taxonomic assignment of the unknown once a model performs satisfactorily. When using *Mass Mountaineer*, the software has a utility to automatically classify the unknown spectra against the multivariate model and the program provides a probable estimate of accuracy. For *random forest*, first build the model according to §4.2.1.4, then use the full reference set as training and the unknowns as test set.
- **Final classification decision** is obtained when (i) the library results, (ii) the heatmap, and (iii) the multivariate analysis all agree with each other.
- **Classification validation** as described in §4.2.1.5.

4.2.3 STRENGTHS & LIMITATIONS

Strengths

- Very small sample is needed (wood slivers).
- Versatile sampling. As only a wood sliver is needed, samples can be easily collected from a range of products (guitars, watches, logs, ...).
- Analyses can be done at **low cost**. Once you have the mass spectrometer, running costs are low and no other equipment, expensive chemicals or software is required for wood identification.
- Tailor-made software for data analyses (*Mass Mountaineer*, see Table 5) comes together with the purchase of a JEOL DART TOFMS.
- Analyses can be performed in few minutes, allowing for high-throughput screening. Once models are built for certain (groups of) species/provenances wood identification can be done within a short time.
- A curated reference database (ForeST Database[©]) of about 2000 species, representing 630 genera is currently available (Nov. 2019).

Limitations

- **Extreme physical or chemical processes** in the wood (caused by *e.g.* temperature, micro-organisms) could alter the DART MS profile.
- Possible interference of chemical contaminants such as glue and packaging.
- **Wood panels and plywood** might be difficult to identify due to the adhesives used for the manufacturing. The mix of species used for their fabrication might also be a limitation.
- **Some tree species** present few signals in DART MS and therefore provide insufficient data for evaluation.
- Sap- and heart-wood can show different profiles. As the current database is based on heartwood only (being the best identifier and the most used in wooden objects), caution is therefore needed when an unknown sample might contain sapwood.

4.3 Key literature for DART TOFMS data analysis

- Baxter, M.J. (1999). On the Multivariate Normality of Data Arising from Lead Isotope Fields. Journal of Archaeological Science 26(1): 117–124.
- Cody, R.B., J.A. Laramee and H.D. Durst (2005). Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry 77(8): 2297-2302.
- Cody, R.B., A.J. Dane, B. Dawson-Andoh, E.O. Adedipe and K. Nkansah (2012)."Rapid classification of White Oak (*Quercus alba*) and Northern Red Oak (*Quercus rubra*) by using pyrolysis direct analysis in real time (DART (TM)) and time-of-flight mass spectrometry. Journal of Analytical and Applied Pyrolysis 95: 134-137.
- Deklerck, V., K. Finch, P. Gasson, J. Van den Bulcke, J. Van Acker, H. Beeckman and E. Espinoza (2017). Comparison of species classification models of mass spectrometry data: Kernel Discriminant Analysis vs Random Forest; A case study of Afrormosia (*Pericopsis elata* (Harms) Meeuwen). Rapid Communications in Mass Spectrometry 31(19): 1582-1588.
- Deklerck, V., C. Lancaster, J. Van Acker, E. Espinoza, J. Van den Bulcke and H. Beeckman (under review). Chemical fingerprinting of wood sampled along a pithto-bark gradient allows individual distinction and provenance identification. Forestry.
- Deklerck, V., T. Mortier, N. Goeders, R.B. Cody, W. Waegeman, E. Espinoza, J. Van Acker, J. Van den Bulcke and H. Beeckman (2019). A protocol for automated timber species identification using metabolome profiling. Wood Science and Technology <u>https://doi.org/10.1007/s00226-019-01111-1</u>.
- Espinoza, E.O., C.A. Lancaster, N.M. Kreitals, M. Hata, R.B. Cody and R.A. Blanchette (2014). Distinguishing wild from cultivated agarwood (*Aquilaria* spp.) using direct analysis in real time and time of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 28(3): 281-289.
- Espinoza, E.O., M.C. Wiemann, J. Barajas-Morales, G.D. Chavarria and P.J. McClure (2015). Forensic Analysis of Cites-Protected *Dalbergia* Timber from the Americas. IAWA Journal 36(3): 311-325.
- Evans, P.D., I.A. Mundo, M.C. Wiemann, G.D. Chavarria, P.J. McClure, D. Voin and E.O. Espinoza (2017). Identification of selected CITES-protected Araucariaceae using DART TOFMS. IAWA Journal 38(2): 266-S3.
- Finch, K., E. Espinoza, F.A. Jones and R. Cronn (2017). Source Identification of Western Oregon Douglas-Fir Wood Cores Using Mass Spectrometry and Random Forest Classification. Applications in Plant Sciences 5(5): apps.1600158.
- D., Hawkins (1980). Identification of Outliers. Chapman and Hall, London.
- Lancaster, C. and E. Espinoza (2012). Analysis of select *Dalbergia* and trade timber using direct analysis in real time and time-of-flight mass spectrometry for CITES enforcement. Rapid Communications in Mass Spectrometry 26(9): 1147-1156.

- Lancaster, C. and E. Espinoza (2012). Evaluating agarwood products for 2-(2-phenylethyl) chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 26(23): 2649-2656.
- McClure, P.J., G.D. Chavarria and E. Espinoza (2015). Metabolic chemotypes of CITES protected *Dalbergia* timbers from Africa, Madagascar, and Asia. Rapid Communications in Mass Spectrometry 29(9): 783-788.
- Paredes-Villanueva, K. (2018). Tropical timber forensics: a multi-methods approach to tracing Bolivian *Cedrela* (Doctoral dissertation, Wageningen: Wageningen University).
- Paredes-Villanueva, K., E. Espinoza, J. Ottenburghs, M.G. Sterken, F. Bongers and P.A. Zuidema (2018). Chemical differentiation of Bolivian *Cedrela* species as a tool to trace illegal timber trade. Forestry: An International Journal of Forest Research 91(5): 603-613.

Library Search & General Classification Scheme Using Mass Mountaineer

This document is intended as a general guide, refer to the Mass Mountaineer manual for complete steps

If using Mass Mountaineer for the first time:

- 1. Download NIST17 and the libraries into your C: drive.
- 2. Cut and paste all of the libraries into the MSSEARCH folder within NIST17

	This PC > Local Disk (C:) > NIST17			
	Name	^	Date modified	Туре
	AMDIS32		6/8/2021 1:33 PM 2/18/2022 12:16 PM	File folder File folder
	*			
	*			
	Ŕ			
	5			
Local Disk (C:) > NIST17 > MSSEARCH			
	Name	Date modified	Туре	Size
	AngioBRAZIL-2021	2/18/2022 12:15 PM	File folder	
,	Angio_2022	2/18/2022 12:15 PM	File folder	
1	Angio_2022_Indexed	2/18/2022 12:15 PM	File folder	
ţ	Dipt_2022	2/18/2022 12:15 PM	File folder	
ţ	Dipt_2022_Indexed	2/18/2022 12:15 PM	File folder	
	Faga_2022	2/18/2022 12:15 PM	File folder	
	Faga_2022_Indexed	2/18/2022 12:15 PM	File folder	
	Frankincense_22	2/18/2022 12:15 PM	File folder	
(Frankincense_22_Indexed	2/18/2022 12:15 PM	File folder	
(**.)	Gymno-2022	2/18/2022 12:15 PM	File folder	
	Gymno-2022_Indexed	2/18/2022 12:15 PM	File folder	
	MAINLIB	2/18/2022 12:16 PM	File folder	
	NIST-DARTMS-Forensics-2020-v1	2/18/2022 12:16 PM	File folder	
	nist_msms2_2017	2/18/2022 12:16 PM	File folder	
	nist_msms_2017	2/18/2022 12:16 PM	File folder	
	nist_ri	2/18/2022 12:16 PM	File folder	
	Oils_NEG	2/18/2022 12:16 PM	File folder	
	Oils_POS	2/18/2022 12:16 PM	File folder	
	Sapwood_2021	2/18/2022 12:16 PM	File folder	
	ISOFORM	1/15/1997 11:25 AM	Configuration sett	2 KB
	XWMBA458.DLL	7/31/1997 3:31 PM	Application exten	391 KB
	XWMTE458.DLL	7/31/1997 3:31 PM	Application exten	71 KB

3. Open Mass Mountaineer and click the Composition tab (red circle), then click the NIST directory button and select Specify NIST directory

ſ	5	Mass Mountaineer		
		📓 🔛 Spectrum 🖽 Composition 📜 Isotopes 🏦 Series 🚼 MS Periodic Ta	Table Classify ESI Peptide Nucleotide Lipid	
		File View Edit Options Print Tools NIST directory Help		
		Compositions Constraints NIST Search Specify NIST directory	Y	
		NIST is not installed	Abund	
		Open MS Target m/z Charges	Isotope Mate	ch
	^	^ File ★ 1		
		Threshold % 5		
		☑ Single Target m/z □ Checked Only		
		Correction to Mass for Searches		
		H v		

4. Locate the NIST17 folder and click OK

I	Browse For Folder
	Browse for the folder that contains The NIST database, e.g. $C:\mathbb{N}$
	u 🗖 This DC
	This PC
	> Deskton
	> B Documents
	>
	> h Music
	> E Pictures
	> 📑 Videos
	🗸 🏪 Local Disk (C:)
	> 🔥 ~NIST14
	> 🔜 ~NISTDEMO
	Intel
	> MetaForest
	MSDS_6306_Doing-Data-Science-Master
	> MSSEARCH
	NIST17
	AMDIS32
	oldmssearch
	PerfLogs
	> Program Files
	> Program Files (x86)
	> Release
L	> Users

- 5. Click the NIST Search tab at the top of Mass Mountaineer and check to see if the libraries are now visible. If you do not see the libraries, restart Mass Mountaineer.
- 6. Select the Angio_2022 library by simply clicking on it.
| Γ | Search Formula or
C3H6O | Search Name
Benzene |
|---|---|--|
| | Search | Search 🗹 a-z only |
| | Print To Word File | Isotope Graph |
| | Databases to search>
Press CTRL to select > 1. | mainlib AngioBRAZIL-2021 Angio_2022 Angio_2022_Indexed Dipt_2022 V |

7. Now you are ready to perform a search against the library

Search a Single Spectrum File

1. Open Mass Mountaineer and click the Composition tab (red arrow), then click Options, then hover over "Sort by" and select Reverse

File View	Edit	Options	Print	Tools	NIST dir	ectory H	lelp								
ompositions	Const	Rep	ort if no	composi	itions found										
		Use	abundar	it isotop	e for calcula	tions					Solo	cted to	lsotone C	'alculator	
NIST Entries f	for N	Ave	rage mas	ss tolera	ince			•			Ocie			alculator	
		Estir	nate ave	rage ma	ass tolerano	e from zoo	med-in ar	ea	а		Ado	d Sele	cted to Sea	arch List	S
Name		Sort	by					•		Fo	rward				
EBE_Diospyro	sRopo	urea_W	D190397	·		7	43	744	~	Re	everse				
EBE_Diospyro	sEben	um_WD	169076_	L		7	35	741	_						
EBE_Diospyro	sCrass	siflora_W	D17369	7		7	30	732							
EBE_Diospyro	sAnton	gilensis	WD211			7	27	731							
EBE_Diospyro	sCrass	siflora_W	D14121	6		7	26	728							
EBE_Diospyro	osSpV	VD13039	3_COM			7	22	727							
EBE_Diospyro	sCrass	siflora_W	D14118	5		7	19	719							
EBE_Diospyro	sCrass	ifloraCF	_WD141			7	17	717							
EBE_Diospyro	osCrass	ifloraCF	_WD141			7	14	716							
EBE_Diospyro	osSpV	VD13040	5_COM			7	13	715							
EBE_Diospyro	sCrass	siflora_W	D17368	2		7	13	713							
EBE_Diospyro	osCrass	siflora_W	D17368	4		7	11	711							
EBE_Diospyro	osCrass	siflora_W	D17368	4		7	11	711		-					
c									>						
	Searc	h Formul	а	or	Search	h Name									Databa
	C3	H6O			Ben	zene				100	I				Databa
	-									100 -	1				4
	Sea	arch			Sea	arch 🗹	a-z only		%	80 -	1				
	D	rint To M	lord Filo		laotono	Graph			ansit	60 -	-				
	Г		olu i lie		isotope	Giapii			line.	40-			101.100		4
					mainlib		^		Bel	-10		96.04	15 191.180	,	407
	Det				AngioBRA	ZIL-2021	_			20-	1	00.000	150.091 23	5.206	393.3
	Pres	abases ti is CTRI	o searcr to select	->	Angio_202	22 22 Indexed	1			0-		0,040,00	105.0		200
	1100	S O THE			Dipt_2022		~			-1	0.U		105.6		369.
														NIS	T Datab

2. Click the Spectrum tab (red circle), then click the Mass Spectrum button (red arrow)

3. Locate the spectrum you want to analyze and click Open

Mass Mountaineer					
🌌 Open MS File					×
\leftarrow \rightarrow \checkmark \uparrow \square \ll Profi	ciency Test 03	30122 > Proficiency Test Data Files	✓ Ö	arch Proficiency Test	Data
Organize 👻 New folder					•
	^	Name	Date modified	Туре	^
🖈 Quick access		Item-1b	3/17/2022 3:22	M Text Docu	iment
📃 Desktop	*	ltem-1c	3/17/2022 3:22	M Text Docu	iment
👆 Downloads	*	Item-2a	3/17/2022 3:23	M Text Docu	iment
Documents	*	ltem-2b	3/17/2022 3:23	M Text Docu	iment
Pictures	*	ltem-2c	3/17/2022 3:23	M Text Docu	iment
Dalbergia Reruns		ltem-3a	3/17/2022 3:23	M Text Docu	iment
ForeST 2022		ltem-3b	3/17/2022 3:24	M Text Docu	iment
	-i	ltem-3c	3/17/2022 3:24	M Text Docu	iment 🗸
	×	<			>
File nam	ie: Item-2b		✓ TSSPro	3 centroided(*.txt)	\sim
			0	en Cano	:el
	,		0		

4. You will see the spectrum in the top window on the right side of the screen (red circle)

5. Click the Match Spectra tab

6. Click NIST Search

Mass Mountaineer
🔛 Spectrum 🛄 Composition 📃 Isotopes 🚠 Series 🔛 MS Periodic Table Classify ESI 🛛 Peptide
File Profile Edit View Ontions Print to Word or RTR Tools Search Search multiple charges
New Control Carton Link Marco Defending and mice and mice and an an
View Special Search List, Wass Delect Plots, Series and nyz dimenences, Compare Special Match Special
lumn to NIST Search Window
Sumpto Not Dearch Window
User MS Directory to Search Subdirectories
Witerest 2020Apris PLIPCED-2022
✓ Presearch Threshold % 20 Subtract Spectra
Min. Presearch Peaks 1 Boolean Subtract
IDENTITY GEARCH Add Spectra
Find Spectra
SELECT LIPPARY ON COMPOSITIONS Containing m/z:
TAB. 425.377563
Upsplay New Sector Vision database for matching spectral parison peaks

7. Mass Mountaineer will show the species in ForeST that matched best with the spectrum (red circle)

8. In order to compare the matches, click Spectrum (red circle), and you will see all species/sample matches.

Batch searching ForeST Libraries

1. Set search results to Reverse by navigating to the Composition tab, select Options, hover over "Sort by" and click Reverse.

🕍 Mass Mountaineer							
😡 Spectrum	mposition 🛄 Isotopes 🏦 Series 🔛	MS Periodic Ta	able Cla	ssify	ESI	Peptide	Nucleotic
File View Edit	Options Print Tools NIST director	ory Help					
Compositions Con	Report if no compositions found						
NIST Entries for	Use abundant isotope for calculations Average mass tolerance Estimate average mass tolerance from zoomed-in area						
Name	Sort by		•		Forwar	d	
MEL_KhayaSpW	D173810_Tw14629	704	705	~	Reverse	е	
MEL_Khayalvoren	MEL_Khayalvorensis_WD171214_Tw2 699 700						
MEL_KhayaSeneg	MEL_KhayaSenegalensis_WD210566 670 671						

2. From the Composition tab, select Print, then hover over "Max. NIST spectral matches to print" and input the desired number of results to be shown.

Mass Mountaineer							
🔛 Spectrum	Isotopes 📠 Series	🔛 MS Periodic Ta	ble Classify	ESI	Peptide	Nucleotide	L
File View Edit Options F	Print Tools NIST dir	ectory Help					
Compositions Constraints NIS	Print Report to Word	or RTB	1				
	Open Existing Word F	ïle		Sel	lected to le	otone Calcul	at
NIST Entries for Matching co	Include # NIST entrie	s					
	Max. NIST spectral m	atches to print	•		10	earch L	_is
Name	Max. synonyms to pri	nt	•	Synor	nyms		
MEL_KhayaSpWD173810_T	Print ALL composition	s with entries in data	base				
MEL_Khayalvorensis_WD171214	4_Tw2	699	700				
MEL_KhayaSenegalensis_WD2	10566	670	671				
MEL_CarapaMolaccana_WD175	5283_K	664	664				
MEL_KhayaSpWD173803_Tw1	4621	654	655				
MEL KhawaSonogalonsis WD1	74874	640	640				

- 3. From the Spectrum tab, click Batch processing, and hover over "Search for matching spectra" to click "Search NIST – Format DB"
 - a. NOTE: Be sure that Compound search is not selected, the drop-down list should look as shown below.

4. Click Batch processing again, and select "Batch process selected files"

5. Select the spectra to be searched and click Open, after a few moments a Word document will appear and begin populating with the search results.

General scheme for classification

1. After determining which species should be included in a model, navigate to the Classify tab, and then click Set Up.

🔛 Spectrum	Composition 📃 Isotopes	🛗 Series 🔛 MS Periodic Table	Classify
File Options	Edit Tools Print Help		\smile
Set up compute	e Statistics Combine spectra	a HeatMap	

- 2. Now it is time to create a heat map using spectra from the species that matched the unknown/evidence item.
 - 1. Click Add Class for as many species as needed and type in each species name.
 - 2. Click Add file(s) and select approximately 20 spectra per species, click Ok
 - 3. Highlight all spectra for a single species (click the topmost spectrum, hold down Shift, and click the bottommost spectrum) and click the corresponding species in the box at the top.
 - 4. Click Set Class for Selected Files:

					3		
Classes	4	T Set Cla	raining Set	Dalb Dalb	ergia nec ergia pur	perrieri purascens	Set RT for Selected Files
Class Name ^ Dalbergia neoperrieri		Add fi	le(s) Delete	All	Delete se	elected file	Selected->Unclassified
Dalbergia purpurascens		2			Check	all	
Dalbergia davidii		Index	Class	Class#	R.T.(s)	File Name	^
Dalbergia madagascariensis		126	Dalbergia purpur	1	0	FAB_Dalberg	iaPurpurascens_WD210919
Dalbergia humbertii		127	Dalbergia purpur	1	0	FAB_Dalberg	iaPurpurascens_WD210921
Dalharaia chloracarna		128	Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri_WD170976_Z
		129	Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri_WD210949_Z
			Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri_WD210950_Z
1 Add Class			Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri_WD210951_Z
			Dalbergia neope	0	0	FAB_Dalberg	aNeoperrieri_WD210953_2
Class Color			Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri-AEE_WD211191_2
			Dalbergia neope	0	0	FAB Dalberg	iaNeoperrieri-AFF_WD21118
Delete Class		136	Dalbergia neope	0	0	FAB Dalberg	iaNeoperrieri-AFF WD21118
		137	Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri-AFF_WD21118
Delete All		138	Dalbergia neope	0	0	FAB_Dalberg	iaNeoperrieri-AFF_WD21119

3. Construct a heatmap of the species matches from the reverse search and the unknown/evidence item by clicking the Heat Map tab.

4. Then click the Heat Map button.

Setup	Compute S	Statistics	Combine spectra	Heat Map		
		H	eat Map Color] [Fisher Ratios	
H	eat Map	Heat	lap Backgd. Color]]	Redraw FR	
Marca	•		1ap Highlight Color		11-14	
Mass	es->reatures	Save	Heat Map to Excel			
Ave	eraged Only	Tab Thre Sav	-delimited eshold saved data e Absolute Intensitie	[es	_ Normalize _ Swap axes	

- 5. Visual analysis of the heat map can allow the user to discard those species that are not good matches. We see in the heat map above that *D. greveana*, *D. humbertii*, and *D. madagascariensis* can be removed from further analysis.
 - 1. Note: More than one heat map may be required, especially if there are more species matches than can easily be seen in a single heat map.

- 6. Remove species that do not match the unknown/evidence item by navigating to the Set Up tab.
 - 1. Highlight the species you want to remove under Classes and click Delete Class.
 - 2. Select the accompanying spectra files from the Training Set and click Delete Selected File.

- Once you are satisfied with your training set, remove the unknown/evidence item spectra and classes, then rebuild the heat map by navigating to the Heat Map tab and pressing the Heat Map button (Steps 3 & 4)
- 8. Press the Masses -> Features button, this may take a few minutes depending on the size of the training set, you can monitor the progress in the bottom left corner of the screen.

Heat Map Heat Map Color Fisher Ratios Heat Map Heat Map Backgd. Color Redraw FR Masses->Features Heat Map Highlight Color Halt Save Heat Map to Excel Normalize Averaged Only Tab-delimited Swap axes	Progress Creating and organizing a list of masses from all spectra.
Save Absolute Intensities Map Checked Features Only Specify m/z limits 50 Highlight m/z: 0.0 Info m/z variability	

- 9. Navigate back to the Set Up tab and you will see that there is now a list of ions in the box at the bottom of the screen.
 - 1. Click Purge Duplicates ~5 times (this deletes any identical entries).
 - 2. Click Build Vectors from Data Files (this applies ANOVA to the ions to find statistically relevant values).
 - 3. Click Delete Unchecked m/z (this removes those ions that were not statistically relevant).
 - i. NOTE: If you wish to delete all ions click Clear All.

Open MS from Training Set	Selected m/z's	р -	Fold ^	Build Vectors	Ma	ass tolerance (mmu):
Open MS File	255.10310	-		Files	2	D
	209.12640	-				Normalize
Threshold %	269.09479	-		Clear All		
5	271.12790	-		Delete	~	
	271.13971	-		Unchecked	3	
Add->	285.09750	-				All Classes
	269.10199	-		Check All		Volcano Plot
Add all->	253.08279	-		Purge	1	
	269.06790	-		Duplicates	L _	Composition
Number of	259.08301	-				
features: 0	285.11221	-	\sim	<-Add	r	Mass
	<		>			
	Mark Checked Pts in V	olcano Plot	Graph Checke	ed Pts		

10. Navigate to the Compute tab and click Calculate.

😡 Spectrum CH Composition 🔛 Isotopes 📲 Series 🚼
File View Edit Tools Print Help
Set up Compute Statistics Combine spectra Heat Map
Classification Controls
R
Calculate
O Covariance
Correlation
Std. dev. for KPCA, KDA: 100.0
Number of PCs: 3 V Use MHD
Index Principal Components Proportion
C C
C
C
N
C
C
С
Set 85% Variance covered 0.0 %

- 11. A good way to first explore the model is to create a PCA (Principal Component Analysis) model. The default number of PCs (Principal Components) is 3. There are two ways to adjust this number to cover ~85-90% of the variance:
 - 1. Click the Set 85% button

Cald Std. dev. f Numl	ulate or KPCA, KDA: 100.0 ber of PCs: 3 ~	Method O Covariance Correlation Use MHD Cl
Index	Principal Components	Proportion ()
Set 85 Graph	% Variance covered	d 0.0% (

2. Or, click the Graph button and hover the cursor over the blue diamonds. The values will show up automatically, in the case below we can see that we need 35 PCs to cover 89.5% of the variation. Then close the graph and adjust the Number of PCs value.

NOTE: PCA is <u>NOT</u> a classification tool, by itself useful for data exploration.

12. Click Calculate once more to see the trends in your data. In order to make a classification model, click the box next to DAPC (Discriminant Analysis of Principal Components) and click Calculate once more. If there are differences between the species classes, the result of DAPC should show some grouping trends.

13. To find the accuracy of your model, click the Validate (LOOCV) button. LOOCV (Leave One Out Cross Validation) takes each sample out of the model and calculates probability that it belongs to a specific class. An LOOCV value of 100% indicates that all samples were assigned to their correct class, while an LOOCV value below 85% indicates that the model may be unreliable. This generally happens with spectra from closely related species or if a misidentified sample/s is in the training set, sometimes this can be remedied by cleaning up the training set samples through heat map analysis.

Validate (LOOCV) Halt Enlarge Graph	_	Mass_	Mountair	neer_vб			1427447444		×
		Leave Misse 8	out one o d classific 12	cross vali ations (in 20	dation: 9 [.] ndices): 21	1.03 % 35	55	61	
	1:		-11 2	1		And and a state of the state of		OK	The second se

NOTE: There are other classification algorithms that are available in Mass Mountaineer, read about them before using so that you know their purpose and usage.

14. Navigate back to the Set Up tab, find the Unclassified Spectra table on the right side of the screen and click Add File(s). Locate your unknown/evidence spectra and click Open.

Uncla	ssified Sp	ectra	I	
Add file(s)	Delete All	Delete All Delete selected file		Make Test Set
Filename		Class	R.T. (s)	File path
LAB-9a-1.txt		Uncla.	1	W:\WISC Cases\202
LAB-9a-2.txt		Uncla.	1	W:\WISC Cases\202
LAB-9a-3.txt		Uncla.	1	W:\WISC Cases\202
LAB-9b-1.txt		Uncla.	1	W:\WISC Cases\202
LAB-9b-2.txt		Uncla.	1	W:\WISC Cases\202
LAB-9b-3.txt		Uncla.	1	W:\WISC Cases\202

15. Return to the Compute tab and click Calculate.

i. NOTE: If you click Validate (LOOCV) after adding spectra to the Unclassified Spectra table they will be deleted and you will have to add them again.

16. The unclassified spectra will be assigned to the species class that is the best match.

File		Distance	Class	Prob. %	Class name
LAB-	9a-1.txt	15.991328	0	94.90	Dalbergia neoperrieri
LAB-	9a-2.txt	10.21192	0	85.19	Dalbergia neoperrieri
LAB-	9a-3.txt	14.397785	0	92.96	Dalbergia neoperrieri
LAB-	9b-1.txt	12.008464	0	89.03	Dalbergia neoperrieri
LAB-	9b-2.txt	23.966088	0	99.29	Dalbergia neoperrieri
LAB	0b-3.txt	22.709813	0	98.99	Dalbergia neoperrieri

17. If you wish to keep the results of the classification, right click on the table and select Save Unknown Assignments to Excel.

File	Distance	Class	Prob. %	Class name
LAB-9a-1.txt	15.991328	0	94.90	Dalbergia neoperrieri
LAB-9a-2.txt	10.21192	0	85.19	Dalbergia neoperrieri
LAB-9a-3.txt	14.397785	0	92.96	Dalbergia neoperrieri
LAB-9b-1.txt	12.008464	0	89.03	Dalbergia neoperrieri
LAB-9b-2.txt	23.966088	0	99.29	Dalbergia neoperrieri
LAB-9b-3.txt	22.709813	0	98.99	Dalbergia neoperrieri
	ave Unknown Assignments to Excel			

 The model parameters can be printed to Word by clicking the Print button and selecting Print to Word. Steps 17 & 18 should always be done when analyzing evidence.

Mass 🖌	Mountai	ineer						
🔛 Spe	ectrum	CH, C	ompositio	n 🛄	Isotopes 📶 Se	eries 🚦	MS	Periodic T
File	View	Edit	Tools	Print	Help			
Setup	Comp	ute	Statistics	F	Print to Word			
				F	Print Feature Info	to Word		
Classification Controls					F	Right-cl	ick on Gra	
	Calcu	late			Method		⊘ 3E) PCA Gra

Protocol for Analysis using DART-TOFMS

This document is intended as a general guide, refer to the JEOL manual for complete steps

- 1. For positive mode operations, dilute the Poly(ethylene glycol) (PEG) calibration standard with a small amount of methanol. If operating in negative mode **do not** dilute the Fomblin calibration standard.
- 2. Turn on the helium.
- 3. Locate the Isolation Valve on the top of the Mass Spectrometer. IF LIGHT ON VALVE IS ILLUMINATED DO NOT PROCEED.

4. Open the Isolation Valve by gently pressing down and to the right, then pull up and turn the valve to the left. There is a small bar that is visible on the valve, look at this to ensure proper placement while opening and closing the valve.

5. Navigate to the DART controller screen by clicking the Internet Explorer icon, the window should be open already. If it is not, enter the following IP address: 192.168.10.111/

io	Sense	DART	SVP
Lin	ear Rail Contro	ols	
	Х		Y
DA	X F RT Controls	Rail Not Connecte	ed.
	Run	Не	Ð
	Standby	N2	
	Off	Heater Off	
	Standby Off	N2 Heater Off	

- 6. Click Standby \rightarrow turn heater on to desired temperature (350°C or 450°C are typical)
- While the DART is heating, open msAxel. Make sure that the method matches the method on the DART screen (both should be on DART + <u>or</u> DART -). Click the drop-down arrow and switch from Evacuation Ready to Waiting.

8. Once the DART has reached the selected temperature, click Run on the DART screen and Operate from the drop-down arrow on msAxel.

① 192.168.10.111/ □ ☆ ☆	File Load Method Save Method As Tools Help
	MS DART+ Operate V
ionSense DART SVA	Monitor/Sequence Monitor
Linear Rail Controls	MataProcessing ▲ ▲ ♦ ♦ ♦ +↓+
X Y X Rail Not Connected.	
DART Controls	
Run He 🕀	
Standby N2 🤤	
Off ₄50 ° C ∨	
Heater Temperature: 448°C	
Onnection Oltrage	

9. Allow the instrument to warm up, intensity and resolution values will fluctuate greatly for the first minute or two, use this time to fill out the calibration sheet. Fill in the <u>highlighted</u> section. The <u>outlined</u> section will be filled out AFTER collecting the new calibration.

-		-	-			iusi oc uran	icu every Friday			
Date	Initials	Temp	Detector	lon	Resolution	Intensity	PEG Drift	Caviunin Drift	1-R	File Name
		°C	Voltage	(~109.10)			(371.22811)	(375.10799)		/Comments
			-	x						

DART TOFMS Daily QA/QC Log

3

NOTE: Ensure that the instrument is operating correctly by checking the values you see against previous values listed on the calibration sheet, if a discrepancy is noted (e.g., intensity has been previously written as 9000-12000 and is currently fluctuating around 5000 or less) inform personnel. Mass spectra generated while the DART-TOFMS is not operating correctly will need to be re-collected and could damage the instrument.

10. A new calibration file should be made each day before collecting spectra. From the msAxel screen click the Calibration button:

Operate	▼	Calibration PEG 1000+600 5.4.23 Process Method DemoProcessMethod_3.14.23
€ ↓ >		m/z 83.08 Resolution 6321 Intensity 33290

The following screen will appear. Make sure that the m/z Reference file is the same as shown in the picture. Update the Acquisition Data name to the day's date. When ready, click Run and the normal collection window will appear.

NOTE: The collection time is short, be ready to collect your PEG spectrum!

Hold the capillary tube in the sample gap for the entire duration of the run time, this will help the user to collect the full PEG spectrum.

At the end of the collection time, the following screen will automatically appear. Check the 1-R value to be sure it is of sufficient quality <u>without</u> releasing points.

NOTE: It may take multiple runs to get 10^{-12} or, ideally, 10^{-13} values. If the 1-R value is 10^{-11} , we encourage you to find where the file you made was stored, delete it, and collect a new PEG calibration spectrum.

• The location of the calibration files will be similar to the following:

📙 > This PC >	DATA (D	:) > msAxel@LP Data > 2021_July >	Data > Calib >	
	[Name	Date modified	Туре
s		PEG1000+600+5.12.23	5/12/2023 2:20 PM	File folder
	R	PEG1000+600+5.8.23	5/8/2023 10:02 AM	File folder
s	A	PEG1000+600+5.5.23	5/5/2023 10:46 AM	File folder
s	*	PEG1000+600+5.4.23	5/4/2023 12:24 PM	File folder
	*	PEG1000+600+5.2.23	5/2/2023 2:33 PM	File folder
		PEG1000+600+4.20.23	4/20/2023 2:51 PM	File folder

5

5

If the 1-R value is acceptable, make sure that the Calibration File name in the bottom left corner is correct, and click Apply to Instrument.

Calibration File
PEG 1000+600 5.5.23
Description
Apply to Instrument
Apply to Instrument

Record the 1-R value in the QA/QC Log and you are now ready to collect mass spectra from wood.

- 11. We encourage DART TOFMS users to collect a single spectrum from a known timber standard and record a single ion from that standard once per day while operating the DART TOFMS system. WISC & NFWFL use the Caviunin ion from *Dalbergia nigra*, but the standard can be any one of the standards supplied to users who have completed the training in Ashland, OR. Their ions can be found in the Excel spreadsheet "DART-MS Validation", e.g.:
 - a. 381.2066 m/z from *Milicia* sp.
 - b. 205.1915 m/z from *Entandrophragma* sp.

Once the reference standard ion is recorded in the QA/QC Log, no more standards need to be collected and samples can be collected as usual.

The following steps have this process added into the flow for clarification, remember that making a new calibration and collecting a single ion from a wood reference standard needs to be done only <u>ONCE</u> per day.

12. On the msAxel screen, choose Single	Single Analysis X
Run on the bottom right of the MS screen. Press the button to change the destination folder and type a unique file name that correlates to the set of samples to be analyzed. Create a new	Acquisition Data Metasequoia_1 Acquisition Data Folder Description
destination folder by inputting a file name that is not in use.	Method
	MS DART + Feb 2021 Process Method PEG_Drift Analog Signal CH1 CH2
	Data Type
	Profile Centroid
Single Run	Drift Compensation
	Export
	Delete the Original Data (Advanced)
	Run Cancel

13. Press Run and then Go to begin the run.

Start Run	
Please start a run with the Go button.	
	Go Stop

- 14. PEG must be run as the first, middle, and last sample. Collecting multiple PEG spectra during a single run is beneficial because it provides multiple spectral options for drift correction and PEG can be used as a marker to assist in identifying sample spectra from a Total Ion Current Chromatogram (see page 7: Data Reduction). E.g.:
 - i. PEG
 - ii. Positive Control (Dalbergia nigra or other species)
 - iii. PEG
 - 1. Sample 1
 - 2. Sample 2
 - 3. Sample 3
 - 4. Sample 4
 - 5. Sample 5
 - iv. PEG
 - 6. Sample 6
 - 7. Sample 7
 - 8. Sample 8
 - 9. Sample 9
 - 10. Sample 10
 - v. PEG

*NOTE: A positive control sample should be run with the first batch of samples in a day AND at the beginning of every batch of evidence samples.

- 15. Allow time between each sample, there should be sufficient time between chromatograms such that a background can be subtracted from the target chromatogram.
- 16. Select a sliver and hold it such that the heated helium can flow over the sample. The sample should not be blocking the analytical orifice. Monitor the intensity of the resulting chromatogram, low intensity peaks can be indicative of a poorly placed sample or that there is a blockage in Orifice 1.

NOTE: If the intensities of a set of samples is persistent and unusually low it is likely that the orifice needs cleaning; contact personnel before taking any steps to solve this problem.

17. Once the selected set of samples is run, press STOP at the upper left of the screen. This will stop the analysis and return the user to the Monitor/Sequence screen. To continue to run additional sample sets, click the MS button and repeat steps 12-17. If you are finished with running samples continue on to step 16.

File Edit Method	Tools	Help			
MS		Start	Pause	Sto	p Status
Monitor/Sequence	Curr	ent Analysis —			
🔝 DataProcessing		Acquisition Data Folder	n Ac r Da	quisition Ita	Method
	. ▶	Erin	Ma	y 19_Meta	Single Ana

18. To shut down the DART-TOFMS, click the MS button on msAxel. Click the Internet Explorer icon and turn the DART to Off. Then the drop-down arrow and select Waiting or Evacuation Ready (see step 7 above).

19. Turn off the helium and close the Isolation Valve!

Data Reduction

- 1. Open msAxel and click DataProcessing
- 2. Select the folder containing your spectra
- 3. Right click on the file name and select Open TICC

4. In the Chromatograms window on the left, find a calibration standard sample and press both Ctrl and the left mouse button, drag the cursor across the second calibration standard peak. Release the mouse and Ctrl. Press both Shift and the left mouse button and drag the cursor over an

equally sized portion of the background. The collected spectrum will appear in the window to the right.

TIP: Label your calibration and/or sample spectra by right clicking on a peak and selecting Add Description.

5. Once the calibration spectrum is in view, navigate to the bottom right of the screen and click Drift Compensation, then select Multiple. Use one of the PEG ions to correct the drift in the TICC (Table shown at end of document) and click Execute.

6. A new screen will appear, check that you see clusters of dots at the time where each PEG spectrum was collected. If the PEG dots do not appear, try changing the m/z value shown in the image above to another ion found in PEG.

If the PEG clusters are satisfactory (i.e., there is a cluster of dots at each time that a PEG spectrum was collected), click Apply to Current Data. This process will correct for drift across the entire TICC. Record the actual value of the PEG ion 371.22881 as well as the ion of choice from your wood reference sample in the QA/QC sheet. You are now ready to collect sample mass spectra.

5. Pressing both Ctrl and the left mouse button, drag the cursor across the first sample peak.

Release the mouse and Ctrl. Press both Shift and the left mouse button and drag the cursor over the background space. The sample spectrum will appear in the right Spectra screen.

11. In the Spectra window, right click on empty space in the right window to select the spectrum window, then click File \rightarrow Export \rightarrow Plain Text (to Centroid). Be sure that the destination is correct, then save the spectrum under a unique file name.

NOTES: If the mouse is dragged or clicked without holding Ctrl or Shift the screen will zoom in on a chromatogram; simply double click on the left window to return to the larger view.

After collecting ~50 spectra, the Spectra screen will not allow additional spectra to be opened. Right click in the right window and select "Close All Charts". Do this regularly or after each sample set.

Multiple windows can be used by clicking the drop-down arrows at the top of both the left and right screens. If you use this feature, be absolutely certain of which sample spectrum you are collecting, misnamed species spectra can lead to 1) rerunning the sample or 2) unnecessarily removing a spectrum due to lack of consensus.

Protocol for the Creation of File Names

- 1. To begin, access either the WD or Ww database in Excel.
- 2. Copy the lines from Excel of the target samples you want to create file names for by highlighting the lines and then pressing **Ctrl** key + c.

1 0			,									
Sheet View		Work	book Views			Show		Z	oom			
\sim : $\times \checkmark f_x$ Bir	nomial_Nor	nenclature	2									
А	В	С	D	E	F	G	Н	1	J	K	L	М
Binomial_Nomenclature	Ww_Num	Collection	Other_N	u Subspecie	Sample_L	Previous	Previous_	Collector	Source_T	Wild_Cul	t Specimer	Heartwoo
Abies balsamea	Ww22036	SUNYESF-	8089		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies balsamea	Ww22036	SUNYESF-	8252		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies balsamea	Ww22036	SUNYESF-	8653		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies balsamea	Ww22037	SUNYESF-	8660		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies grandis	Ww21006	Gleaves_1	LO_483				Private	William G	Private		Block	
Abies grandis	Ww22037	SUNYESF-	8105		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies grandis	Ww22037	SUNYESF-	8124		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies grandis	Ww22037	SUNYESF-	8366		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies procera	Ww220374	SUNYESF-	8237		Tower 1 D)rawer 1	SUNY-ESF		Research		Block	
Abies sp.	Ww21003	TimberEn	gCo_34				Timber En	gineering	Research		Block	
Acacia auriculiformis	Ww200474	100560					Royal Bota	anical Gard	Research		Block	
Acacia mangium	Ww20001	PZAN256V	SOLOMO	N1119	Tower 1 D	rawer 1	World For	est ID	Research		Sliver	
Acacia mangium	Ww20001	AOPS164V	SOLOMO	N1119	Tower 1 D	rawer 1	World For	est ID	Research		Sliver	
Acacia mangium	Ww20002	BHGN301	SIK108		Tower 1 D	rawer 1	World For	est ID	Research		Sliver	
Acacia mangium	Ww22037	AAGZ598			Sliver Cab	oinet 1 Drav	World For	est ID	Research		Sliver	

Transfer the copied target sample information into a new Excel sheet by pressing the Ctrl key and the V key.

	A	В	С	D	E	F	G	н	1	J	К	L	М	N
1	Binomial_Nomenclature	Ww_Num	Collection_Num	Other_Nums	Subspecie	Sample_Locatic	Previous_	Previous	Collector	Source_T	Wild_Cult	Specimer	i Heartwoo	Notes
2	Abies balsamea	Ww220367	SUNYESF-8089			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
3	Abies balsamea	Ww220368	SUNYESF-8252			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
4	Abies balsamea	Ww220369	SUNYESF-8653			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
5	Abies balsamea	Ww220370	SUNYESF-8660]		Tower 1 Drawer	1	SUNY-ESF		Research		Block		
6	Abies grandis	Ww210062	Gleaves_10_483					Private	William G	Private		Block		
7	Abies grandis	Ww220371	SUNYESF-8105			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
8	Abies grandis	Ww220372	SUNYESF-8124			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
9	Abies grandis	Ww220373	SUNYESF-8366			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
10	Abies procera	Ww220374	SUNYESF-8237			Tower 1 Drawer	1	SUNY-ESF		Research		Block		
11	Abies sp.	Ww210033	TimberEngCo_34					Timber En	gineering	Research		Block		
12	Ctrl) -													
13														
1.4														

4. Keep only the columns that are labeled: Binomial Nomenclature, Ww Num OR WD Num, **Collection Num, Country****, and **Family**.

When the country is USA, the state will be used in the file name instead. To do this, shift the states to the left to replace the country "USA". Finally, the **State column can be deleted.

	D	E	F			
	Country	State	Family			
	USA	New York	Pinacea	e		
	USA	Minnesot	Pinacea	e		
	USA	Wisconsin	Pinacea	e		
	USA	Maine	Pinacea	e		
	-		Pinacea	e		
	USA	Washingt	Pinacea	e		
	USA	Idaho	Pinacea	e		
	Canada	Vancouve	🖅 icea	e		
	USA	Washingt	Pinacea	e		
			Pinacea	e		
	А			В	С	
Binomial	_Nomencla	ture		Ww_Num	Collection_Num	
Abies ba	lsamea			144-000067	SUNVESE 9090	
				WW220367	3UNTESF-0005	
Abies ba	lsamea			Ww220367 Ww220368	SUNYESF-8089	
Abies ba Abies ba	lsamea Isamea			Ww220367 Ww220368 Ww220369	SUNYESF-8252 SUNYESF-8653	
Abies ba Abies ba Abies ba	lsamea Isamea Isamea			Ww220367 Ww220368 Ww220369 Ww220370	SUNYESF-8089 SUNYESF-8252 SUNYESF-8653 SUNYESF-8660	
Abies ba Abies ba Abies ba Abies gra	lsamea Isamea Isamea andis			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062	SUNYESF-8089 SUNYESF-8252 SUNYESF-8653 SUNYESF-8660 Gleaves_10_483	
Abies ba Abies ba Abies ba Abies gra Abies gra	lsamea Isamea Isamea andis andis			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062 Ww220371	SUNYESF-8089 SUNYESF-8252 SUNYESF-8653 SUNYESF-8660 Gleaves_10_483 SUNYESF-8105	
Abies ba Abies ba Abies ba Abies gra Abies gra Abies gra	Isamea Isamea Isamea andis andis andis			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062 Ww220371 Ww220372	SUNYESF-8085 SUNYESF-8252 SUNYESF-8653 SUNYESF-8660 Gleaves_10_483 SUNYESF-8105 SUNYESF-8124	
Abies ba Abies ba Abies ba Abies gra Abies gra Abies gra Abies gra	Isamea Isamea Isamea andis andis andis andis			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062 Ww220371 Ww220372 Ww220373	SUNYESF-8085 SUNYESF-8053 SUNYESF-8660 Gleaves_10_483 SUNYESF-8105 SUNYESF-8124 SUNYESF-8366	
Abies ba Abies ba Abies ba Abies gra Abies gra Abies gra Abies gra Abies pro	Isamea Isamea Isamea andis andis andis andis ocera			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062 Ww220371 Ww220372 Ww220373 Ww220374	SUNYESF-8089 SUNYESF-8089 SUNYESF-8252 SUNYESF-8653 SUNYESF-8660 Gleaves_10_483 SUNYESF-8105 SUNYESF-8124 SUNYESF-8366 SUNYESF-8237	
Abies ba Abies ba Abies gra Abies gra Abies gra Abies gra Abies pro Abies sp.	Isamea Isamea Isamea andis andis andis andis ocera			Ww220367 Ww220368 Ww220369 Ww220370 Ww210062 Ww220371 Ww220372 Ww220373 Ww220374 Ww210033	SUNYESF-8085 SUNYESF-8085 SUNYESF-8653 SUNYESF-8660 Gleaves_10_483 SUNYESF-8105 SUNYESF-8105 SUNYESF-8124 SUNYESF-8366 SUNYESF-8237 TimberEngCo_34	

- 5. Change the **Family** column to the abbreviated version of the family name in all capitals. For example:

 - a. Pinaceae → PIN
 b. Fabaceae → FAB
 - i. NOTE: Many families have the same first 3-4 letters, be sure to check what abbreviations have already been used before proceeding.

This is done by highlighting the **Family** column, then hitting the **Ctrl** key and **F** key. This will bring up the **Find and Replace** box.

E	F	G	Н	- I	J	K	L	N
Family								
Pinaceae	Find a	nd Replace					? X	
Pinaceae								
Pinaceae	Find	Replace	:					
Pinaceae	Finds	what						
Pinaceae	FINO	what:					\sim	
Pinaceae								
Pinaceae							Options >>	
Pinaceae								
Pinaceae				Find A	JI Fin	d Next	Close	
Pinaceae								

Click the **Replace** tab and type the family name in "Find what:" and the abbreviation in "Replace with:", then click "Replace <u>All</u>"

E	F	G	Н	1	J	К	L	M
Family								
Pinaceae	Find an	d Replace					?	×
Pinaceae								~
Pinaceae	Fin <u>d</u>	Re <u>p</u> la	ce					
Pinaceae	Findu	(hat)	Dipacaaa					
Pinaceae	FI <u>n</u> d W		rinaceae					\sim
Pinaceae	Replac	e with:	PIN					\sim
Pinaceae							Op <u>t</u> ions >	~
Pinaceae								
Pinaceae	Replac	e All	Replace	Find A	II Ein	d Next	Clos	e
Pinaceae	<u> </u>							

D	E	F
Country	Family	
New York	PIN	
Minnesota	PIN	
Wisconsin	PIN	
Maine	PIN	
	PIN	
Washington	PIN	
Idaho	PIN	
Canada	PIN	
Washington	PIN	
	PIN	

6. Use the same process of "Find" and "Replace" to remove any periods from the names. E.g., "Abies sp." should be "Abies sp"

Change the Binomial_Nomenclature column to have the genus and species both capitalized: using the adjacent cell in column F, type =PROPER(*then click an empty adjacent column, close the parentheses, and press enter.*)

	А	В	С	D	E	F	G
E	Binomial_Nomenclature	Ww_Num	Collection_Num	Country	Family		
/	Abies balsamea	Ww220367	SUNYESF-8089	New York	PIN	=PROPER	(A2)
1	Abies balsamea	Ww220368	SUNYESF-8252	Minnesota	PIN		
1	Abies balsamea	Ww220369	SUNYESF-8653	Wisconsin	PIN		
1	Abies balsamea	Ww220370	SUNYESF-8660	Maine	PIN		
1	Abies grandis	Ww210062	Gleaves_10_483		PIN		
1	Abies grandis	Ww220371	SUNYESF-8105	Washington	PIN		
1	Abies grandis	Ww220372	SUNYESF-8124	Idaho	PIN		
1	Abies grandis	Ww220373	SUNYESF-8366	Canada	PIN		
	Abies procera	Ww220374	SUNYESF-8237	Washington	PIN		
	A	В	С	D	E	F	G
1	Binomial_Nomenclature	Ww_Num	Collection_Num	Country	Family		
2	Abies balsamea	Ww220367	SUNYESF-8089	New York	PIN	Abies Bals	amea
3	Abies balsamea	Ww220368	SUNYESF-8252	Minnesota	PIN		
4	Abies balsamea	Ww220369	SUNYESF-8653	Wisconsin	PIN		

8. Click and drag the bottom right corner of the highlighted new cell to auto-populate the function for all of the **Binomial_Nomenclature** column.

 Click Ctrl + c to copy the highlighted cells and then paste them <u>as values</u> over the original Binomial_Nomenclature names. By pasting as values, the function is not copied over, just the names of the species.

A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	% 7 😫	D	E	F	G
Binomial_Nomenclat		->0 💙 _Num	Country	Family		
Abies balsamea	M/w220367	UNYESF-8089	New York	PIN	Abies Bals	amea
Abies balsamea	Search the menus	JNYESF-8252	Minnesota	PIN	Abies Bals	amea
Abies balsamea	V	JNYESF-8653	Wisconsin	PIN	Abies Bal	amea
Abies balsamea	λ Cu <u>t</u>	JNYESF-8660	Maine	PIN	Abies Bals	amea
Abies grandis	[]ору	eaves_10_483		PIN	Abies Gra	ndis
Abies grandis	Parts Ostissa	JNYESF-8105	Washington	PIN	Abies Gra	ndis
Abies grandis	L Paste Options:	JNYESF-8124	Idaho	PIN	Abies Gra	ndis
Abies grandis		JNYESF-8366	Canada	PIN	Abies Gra	ndis
Abies procera		JNYESF-8237	Washington	PIN	Abies Pro	era
Abies sp.	Paste Special >	mberEngCo_34		PIN	Abies Sp.	
	Smart Lookup					
		-				

Binomial_No	menclatu	e
Abies Balsam	iea	
Abies Grandi	s	
Abies Procera	a	
Abies Sp.		

The new column used to create the GenusSpecies names can now be deleted.

10. Following the same procedures as step 5, highlight the new, capitalized names in Binomial_Nomenclature, then press the space bar <u>once</u> to find a space, "", and replace with nothing. This will eliminate the space between the species names.

A	В	C	D	E	F
Binomial_Nomenclature	Ww Num	Collection Num	Country	Family	
Abies Balsamea	Ww Find and	d Replace		?	×
Abies Balsamea	Ww				
Abies Balsamea	Ww Find	Replace Press the	spacebar once		
Abies Balsamea	Ww Findw	hat:			~
Abies Grandis	Ww Replac	e with:			~
Abies Grandis	Ww				
Abies Grandis	Ww	Type nothing	; here	Opti	ions >>
Abies Grandis	Ww				
Abies Procera	Ww Replac	e <u>A</u> ll <u>R</u> eplace F	ind All <u>F</u> ind	d Next	Close
Abjor Sp	M/w210022	TimborEngCo 24		DIN	

A
Binomial_Nomenclature
AbiesBalsamea
AbiesBalsamea
AbiesBalsamea
AbiesBalsamea
AbiesGrandis
AbiesGrandis
AbiesGrandis
AbiesGrandis
AbiesProcera
AbiesSp.

All the cells are now ready for use as a file name.

11. In an unused column, type =CONCATENATE(and then follow this format:

=CONCATENATE(Family,"_",Binomial_Nomenclature,"_",Ww_Num,"_",Collection_Num,"_",Country)

D	$22 \vee : \times \checkmark f_x = \text{CONCATENATE}(\text{E2,"},\text{A2,"},\text{B2,"},\text{C2,"},\text{D2})$											
	A	В	С	D	E	F	G	Н	I.	J		
1	Binomial_Nomenclature	Ww_Num	Collection_Num	Country	Family							
2	AbiesBalsamea	Ww220367	SUNYESF-8089	New York	PIN	=CONCAT	ENATE(E2,	'_",A2,"_",	,B2,"_",C2,'	'_",D2)		
3	AbiesBalsamea	Ww220368	SUNYESF-8252	Minnesota	PIN							
4	AbiesBalsamea	Ww220369	SUNYESF-8653	Wisconsin	PIN							
5	AbiesBalsamea	Ww220370	SUNYESF-8660	Maine	PIN							
5	AbiesGrandis	Ww210062	Gleaves_10_483		PIN							
7	AbiesGrandis	Ww220371	SUNYESF-8105	Washington	PIN							
В	AbiesGrandis	Ww220372	SUNYESF-8124	Idaho	PIN							
Э	AbiesGrandis	Ww220373	SUNYESF-8366	Canada	PIN							
0	AbiesProcera	Ww220374	SUNYESF-8237	Washington	PIN							

The result will look like:

PIN_AbiesBalsamea_Ww220367_SUNYESF-8089_New York									

Click and drag the bottom right corner of this new cell the same as in step 7 to copy this function to create all the file names.

PIN_Abies	Balsamea	_Ww22036	7_SUNYES	-8089_Ne	w York
PIN_Abies	Balsamea		8_SUNYES	-8252_Mir	nnesota
PIN_Abies	Balsamea		9_SUNYESI	-8653_Wi	consin
PIN_Abies	Balsamea		0_SUNYES	-8660_Ma	ine
PIN_Abies	Grandis_V	Vw210062_	Gleaves_1	0_483_	
PIN_Abies	Grandis_V	Vw220371_	SUNYESF-8	3105_Wash	ington
PIN_Abies	Grandis_V	Vw220372_	SUNYESF-8	3124_Idaho)
PIN_Abies	Grandis_V	Vw220373_	SUNYESF-8	3366_Cana	da
PIN_Abies	sProcera_V	Vw220374_	SUNYESF-8	3237_Wash	ington
PIN_Abies	SpWw21	10033_Tim	berEngCo_	34_	

12. Use **Shift** to highlight these new file names, press **Ctrl** + **C** to copy them, and **Paste as Values** (same as step 8) to replace the first column on the sheet.

٥	P	C	D	E	c	G	U		1	V		М	N	0
A Risewist New contents	D D	Collection Nor	Country	E.		6	п		J	N	L	IVI	IN	0
Binomai_Nomenciature	ww_wum	conection_Num	country	rainity										
PIN_AbiesBalsamea_Ww220367_SU	Ww220367	SUNYESF-8089	New York	PIN	PIN_PIN_	AbiesBalsa	amea_Ww2	20367_SU	NYESF-8089	_New York	Ww22036	7_SUNYES	SF-8089_N	ew York
PIN_AbiesBalsamea_Ww220368_SU	Ww220368	SUNYESF-8252	Minnesota	PIN	PIN_PIN_	AbiesBalsa	amea_Ww2	20368_SU	NYESF-8252	_Minnesot	a_Ww2203	68_SUNY	SF-8252_M	/innesota
PIN_AbiesBalsamea_Ww220369_SU	Ww220369	SUNYESF-8653	Wisconsin	PIN	PIN_PIN_	AbiesBalsa	amea_Ww2	20369_SU	NYESF-8653	_Wisconsin	_Ww22036	59_SUNYE	SF-8653_V	Visconsin
PIN_AbiesBalsamea_Ww220370_SU	Ww220370	SUNYESF-8660	Maine	PIN	PIN_PIN_	biesBalsa	amea_Ww2	20370_SU	NYESF-8660	_Maine_W	w220370_S	UNYESF-8	660_Main	e
PIN_AbiesGrandis_Ww210062_Glea	Ww210062	Gleaves_10_483		PIN	PIN_PIN_	biesGran	dis_Ww210	0062_Glea	ves_10_483		52_Gleaves	_10_483_		
PIN_AbiesGrandis_Ww220371_SUN	Ww220371	SUNYESF-8105	Washington	PIN	PIN_PIN_	AbiesGran	dis_Ww220	0371_SUN1	/ESF-8105_\	Nashington	_Ww22037	1_SUNYE	SF-8105_V	/ashington
PIN_AbiesGrandis_Ww220372_SUN	Ww220372	SUNYESF-8124	Idaho	PIN	PIN_PIN_	AbiesGran	dis_Ww220	0372_SUN1	/ESF-8124_I	daho_Ww2	20372_SUN	IYESF-812	4_Idaho	
PIN_AbiesGrandis_Ww220373_SUN	Ww220373	SUNYESF-8366	Canada	PIN	PIN_PIN_	biesGran	dis_Ww220	0373_SUN1	/ESF-8366_0	Canada_Ww	/220373_SL	NYESF-8	366_Canad	a
PIN_AbiesProcera_Ww220374_SUN	Ww220374	SUNYESF-8237	Washington	PIN	PIN_PIN_	biesProce	era_Ww220	0374_SUN1	/ESF-8237_\	Nashington	_Ww22037	4_SUNYE	SF-8237_V	/ashington
PIN_AbiesSpWw210033_TimberEr	Ww210033	TimberEngCo_34		PIN	PIN_PIN_	۸biesSp۱	Ww210033	TimberEn	gCo_34V	/w210033_1	imberEng	Co_34_		

All other data can be deleted except for the newly created file names.

13. If there are any file names that did not have a country listed in the database, there will be an extra "_" at the end of the file name created. These can be deleted to leave the last piece of the file name as the **Collection_Num**.
File Names

PIN_AbiesBalsamea_Ww220367_SUNYESF-8089_New York
PIN_AbiesBalsamea_Ww220368_SUNYESF-8252_Minnesota
PIN_AbiesBalsamea_Ww220369_SUNYESF-8653_Wisconsin
PIN_AbiesBalsamea_Ww220370_SUNYESF-8660_Maine
PIN_AbiesGrandis_Ww210062_Gleaves_10_483
PIN_AbiesGrandis_Ww220371_SUNYESF-8105_Washington
PIN_AbiesGrandis_Ww220372_SUNYESF-8124_Idaho
PIN_AbiesGrandis_Ww220373_SUNYESF-8366_Canada
PIN_AbiesProcera_Ww220374_SUNYESF-8237_Washington
PIN_AbiesSpWw210033_TimberEngCo_34

The final file names should look like this:

1 File Names

2	PIN AbiesBalsame	a Ww220367	SUNYESF-8089	New York
	_			_

3 PIN_AbiesBalsamea_Ww220368_SUNYESF-8252_Minnesota

4 PIN_AbiesBalsamea_Ww220369_SUNYESF-8653_Wisconsin

5 PIN_AbiesBalsamea_Ww220370_SUNYESF-8660_Maine

6 PIN_AbiesGrandis_Ww210062_Gleaves_10_483

7 PIN_AbiesGrandis_Ww220371_SUNYESF-8105_Washington

8 PIN_AbiesGrandis_Ww220372_SUNYESF-8124_Idaho

9 PIN_AbiesGrandis_Ww220373_SUNYESF-8366_Canada

10 PIN_AbiesProcera_Ww220374_SUNYESF-8237_Washington

11 PIN_AbiesSp._Ww210033_TimberEngCo_34

Creating NIST Libraries

Have your spectra folder ready for indexing in a single folder

1. Open Mass Mountaineer and Select the Spectrum tab

a. NOTE: The default threshold for this process is 0.5, if this requires adjusting the threshold can be changed by navigating to the Edit button in the Spectrum tab.
Mass Mountaineer

			•												
<u>Ω</u> s	pectrum	СĄ	Com	positio	n 🔝 Isoto	pes	s الله	eries	Er o	MS Period	lic Table	Classi	fy E	SI	Ρ
File	e Profile	9	Edit	View	Options	Prin	t to V	/ord or	RTB	Tools	Search	Sear	ch mu	ltiple (chi
Viev	w Spectra	•	0	Сору				•	d m/:	z difference	es Com	pare Sp	ectra	Mat	ch
			Г	Thresho	ld for batch	proce	ssing	•		0.5	5				_
	Mass Sp	pe	A	Attenua	te selected p	oeak b	у	•	SW	ap spectra					
	Compar	ison	MS						·			_			

2. Set the path to the folder of spectra that will be used to create your NIST searchable library.

ċ	🗑 Mas	s Mounta	ineer									
	Ω Sp	ectrum	대 Com	position	lsoto	pes	Serie:	s 🔛	MS Pe	riodic	Table	Cla
	File	Profile	Edit	View	Options	Prin	t to Word o	or RTB	Too	ls S	Search	Sea
		Open					+	nd m/z	z differ	ences	Com	oare :
		Set defa	ult directo	ory for m	ass spectra	а						
		Set defa	ult directo	ory for co	mpound lis	sts		Sw	ap spe	ectra		
		Get MS f	rom Clipt	poard		0	Ctrl+G					
		Get last I	MS that v	vas sent t	to NIST	(Ctrl+N			~	Clear	•
		Clear Se	arch List									
		Printer P	roperties					rance	(mmu))		
		Print Nov	N .			(Ctrl+P	5				
		Print Now Goes to Printer (Does not use Word) Print to PDF (through Word) Printer Preview							reshold % 🔲 Relative to 5 Base peak			D
		Print to V	voru File				uri+vv	Jimer	s, i rim	ers		
		Save MS Save MS Save Sei	earch	A	Four bunda	nd ance						
		Save sea	arch List a	as CSV (t	ext) file			Clear		0		
		Save search list masses +/- tolerances Save mass differerence annotations to file Read mass difference annotations from file							dd to existing search lark Isotope Matches (*)			
		Save def	aults file	now						topo i		-
		Exit				0	Ctrl+X	Sear	ch Moo	dificati	ons	
		ClearC	omparis	on MS	Results	to DB	Search	Mo	odificat	tion Lis	st	
					Delete	Searc	h Peaks					

3. Click Batch Processing and select Export to NIST MSP. Deselect any other selected options.

Peptide	Nu	cleotide Lipid	
narges	Bat	ch processing Help	
h Spectr		Just Print Centroided Mass Spectra	
		Compound search	
		Compositions only	
		Composition and isotope match	
		Search for matching spectra	
		Print Mass Defect Graph to Word	
	~	Export to NIST MSP	
		Export KMD analysis to Excel	
		Threshold before processing	
		Centroid before processing	
		Save centroided text files	
		Purge Compound List masses from spectrum	
		Save 3 column text files	
		Truncate mass range only	
		GC: RT to RI	
		Batch process all files in directory	
		Batch process selected files	
		Limit m/z range for batch report	
		Lower m/z limit	
		Upper m/z limit	
		Interval +	
		Batch Search and Match	
		Summary_only	
		Combine Integer Mass Spectra	
	_		

4. Select Batch process all files in directory

5. Change Decimal places for m/z values to 4. Unselect the MS/MS box. All other settings should match the image below. Click OK and check that your exported files will be saved in the correct path.

	🖶 Spectrum details		_		×	Mass Mountaineer v6	\mathbf{x}
ŗ	Title	FAB_XyliaXyl	ocarpa_WISCv	w200646	Kv		
F	Comment	JEOL (JSA, Inc. Dem	o Lab		The exported NIST-format files will be saved	
l	Instrument	J	EOL SpiralTOF	:		inZ:\Erin\ForeST_2020\Angiosperms\FabaceaeNISTout.MSP	
s	Instrument type		TOF/TOF				
8	Decim	al places fo	or m/z value:	s 4	~	ОК]
		MS/MS					
l		Omit precur	sor peak				
٩	Pree	cursor m/z	2				
	Prec	ursor type	[M + H]+				
l	Collisi	on energy	20 kV				
,		lonization	MALDI				
	Co	llision gas	He	~			
				ОК			

6. Progress can be monitored in the bottom left of the Mass Mountaineer screen. Large datasets will take longer.

Progress Status:	ogress	Status:	

7. Check the spectra folder for the following file:

Name	✓ Date mod	lified Ty	pe		Size
🔂 NISTout	2/1/2022 2:34 PM		indows Installer Patch	62,780 KB	
8. Open MS Search	and sele	ct the Libraria	in tab on the bo	ttom left of the	e screen
Lib. Search Other Search	Names	Compare	Librarian	MSMS	

9. Click Options at top of screen and select Spectrum Import Options

Q <i>B</i> 2

10. Select Accurate m/z. All other settings should be as follows:a. NOTE: Do not use the nominal m/z setting.

Spectrum Import Options	×
EI Spectrum m/z Rounding Multiply m/z in imported spectra by and round to the nearest integer Example: (CH2)n correction is 0.99888 Optional Add this term to all m/z	Tandem Spectrum Accuracy Precursor ion m/z 4 v decimal places Product ion m/z 4 v decimal places
0 before rounding	In-source/EI accurate ion m/z
Adding spectra to Spec List Prepend (add to the top) Overwrite (replace) Ask	Intensity threshold % of max. absolute
Spectra without precursor ion m/z va Accurate	ilue are : m/z spectrum type
○ EI (nominal m/z) ○ In-so	urce
RI type if unspecified	Unspecified ~
Include Synonyms	Set default values
OK Ca	ncel Help

11. Select the Import symbol at the top left of the screen

12. Find the NISTout file created in step 6. Click Import All. Progress can be monitored. Cancel the Background search, this is automatic but not needed and will add time to the process.

			Importing spectra	>
Numbe	er of Spectra found: 4440	FAB_MicroberliniaBisulcata_WD172606-Light_Tw22582-2.txt	Cancel	
# 1 2 3 4 5	The names of spectra retrieved FAB_AcaciaAuriculiformis_WISCw200474_Kw1 FAB_AcaciaBakeri_WD140658_USGSR-1997. FAB_AcaciaHarmandiana_WISCw200475_Kw. FAB_AcaciaHeterophylla_WD173651_Drouin.t: FAB_AcaciaHeterophylla_WD173652_Drouin.t:	Import All Import Selected Import Options Search Options	29%	
6 7 <	FAB_AcaciaHeterophylla_WD173653_Drouin.t: FAB_AcaciaHeterophylla_WD173654_Drouin.t:	Cancel Help		

13. Now that spectra files are imported, select Create Library

14. Enter a unique and descriptive library name, but keep the name short and simple. Click OK

Create library		×
Enter new library name		ОК
ExampleFAB		Cancel
mainlib replib angio-2021 april 8 angiobrazil-2021 focusedforest-21 forest_2021 forest_gymno2021	^	Help
Library Statistics 242466	Spectra	
1 - 242469	ID	

15. Click on any spectrum file in the left pane (Names) and then hold Ctrl + a to select all. Click Move to Library icon. Click OK.

NIST MS Search 2.3 - [Librarian]	NIST MS Search 2.3
<u>File Search View Tools Options Window Help</u>	
	During the operation source spectra will be deleted. Proceed?
Image: Strict Name Move to library	Yes No
1 A FAB_AcaciaAuriculiformis_WISCw200474_Kw	
2 A FAB_AcaciaBakeri_WD140658_USGSR-199	
3 A FAB_AcaciaHarmandiana_WISCw200475_K	
4 A FAB_AcaciaHeterophylla_WD173651_Drouin	
5 A FAB_AcaciaHeterophylla_WD173652_Drouin	
6 A FAB_AcaciaHeterophylla_WD173653_Drouin	
7 A FAB_AcaciaHeterophylla_WD173654_Drouin	

16. Select the unique library name you just created and click OK. The library will begin populating with the spectra.

-	205.1594	
	Moving spectra	×
Ire	Moving to the library: "africa_cm" MOR_MiliciaRegia_WD166842_Tw21224_cleane 11%	Cancel 0
tu		
<u>B:</u>	e e	3 ~ 2
ra		
ate	em/z	

17. After this final step, the new library is ready for use. Libraries can be changed by navigating to the Composition tab, selecting NIST Search, and selecting the target library from the list.

Compositions Constraints NIST Search			
NIST Entries for Matching compounds		Copy Sele	ected Name
Hor Enderter Matching compounds		Copy Selec	cted Formu
Name	Formula	F Match	R Match
FAB_DalbergiaChlorocarpa_WD21170		833	833
FAB_DalbergiaGreveana_WD211694		823	824
FAB_DalbergiaGreveana_WD210984		823	823
FAB_DalbergiaNeoperrieri-AFF_WD2		821	821
FAB_DalbergiaHildebrandtii_WD2109		820	820
FAB_DalbergiaNeoperrieri-AFF_WD2		818	818
FAB_DalbergiaNeoperrieri-AFF_WD2		817	817
FAB_DalbergiaGreveana_WD211234		815	815
FAB_DalbergiaBemarivensis_WD2109		812	812
FAB_DalbergiaChlorocarpa_WD21130		811	811
FAB_DalbergiaNeoperrieri-AFF_WD2		811	812
FAB_DalbergiaPurpurascens-CF_WD		811	813
FAB_DalbergiaChlorocarpa_WD21123		810	810
Search Formula 01	Search	lame	_
СЗН6О	Benze	ne	
Search	Searc	h ⊠a-zon	ly a
Print To Word File	Isotope G	raph	
Databases to search>	mainlib Africa_CM africa cmInte	roduced	

Accurate libraries are used with the "Identity Search" option

Creating High Resolution Indexed Libraries

This library type is used with the "In-Source HiRes with PRESEARCH" option in Mass Mountaineer

1. Using steps 1-15 listed above, navigate to the NIST folder within the C: drive and open the MSSEARCH folder

NIST14		AMDIS32	
NIST17		MSSEARC	Ή
-NISTDEMO			
lntel			
MetaForest			
MSDS_6306_Doing-Data-Science-Master			
MSSEARCH			
NIST17			

2. Locate the IndexNISTLib.bat file and double click to open it

78513202.HLM	HPTRANS.TBL	🖲 nistms
78723402.HLM	🔀 HR_36-Dimethoxyflavone	💿 nistms.exe.HiDpi
79417706.HLM	HR_36-Dimethoxyflavone.STB	📑 nistms.HighDpi
79492503.HLM	ikey_temp.mol	🔊 nistms
80292074.HLM	lndexNISTLib	NISTMS.SPL
81127706.HLM	IndexNISTLib	nistms1.mol

3. The Index NIST User Lib command screen will open

4. Type the *exact* name of the library that is to be converted into an indexed library and hit Enter

5. Press Enter (or any key) again once the prompt "Press any key to continue..." appears, a screen will flash up at this point and immediately close.

6. Press Enter (or any key) a third time and the following window will appear, do not click any buttons within the window

💑 Convert MS L	ibraries or Datafiles to NIST or	HP JCAMP Format	- 🗆 X
NIST Library	<none></none>		
Output	C:\NIST17\MSSEARCH\Africa_0	CM_Indexed	
-Input Libraries of	or Text Files	NIST MS User Librarie	25
Converting	endelingen en ede		×
C:\NIST17\	MSSEARCH\Africa CM.SDF		
			Cancel
How	v to Produce Output	Outpu	t Format
Options	Use subset 🔲 Define Subset	NIST MS Library	<u></u>
Add Input Libr	aries/Files Cor	vert	Exit

7. Once the library is complete the window will disappear. Check the MSSEARCH folder for the new library, it will have the exact name as the original library with _Indexed on the end.

Africa_CM
Africa_CM_Indexed